from PIL import Image import requests import torch from torchvision import transforms from torchvision.transforms.functional import InterpolationMode device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') import gradio as gr from models.blip import blip_decoder image_size = 384 transform = transforms.Compose([ transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth' model = blip_decoder(pretrained=model_url, image_size=384, vit='large') model.eval() model = model.to(device) def inference_image_caption(raw_image): image = transform(raw_image).unsqueeze(0).to(device) with torch.no_grad(): caption = model.generate(image, sample=True, top_p=0.9, max_length=20, min_length=5) return caption[0] inputs = gr.Image(type='pil', label="Input") outputs = gr.outputs.Textbox(label="Output") title = "BLIP" description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation" app = gr.Interface(inference_image_caption, inputs, outputs, title=title, description=description, examples=[['starrynight.jpeg',]]) app.launch(enable_queue=True, share=True)