deepdanbooru / app.py
tangjicheng
modified: app.py
6f99225
raw
history blame
2.15 kB
import cv2
import numpy as np
import onnxruntime as rt
import gradio as gr
from huggingface_hub import hf_hub_download
from dataclasses import dataclass
tagger_model_path = hf_hub_download(
repo_id="skytnt/deepdanbooru_onnx", filename="deepdanbooru.onnx")
tagger_model = rt.InferenceSession(
tagger_model_path, providers=['CPUExecutionProvider'])
tagger_model_meta = tagger_model.get_modelmeta().custom_metadata_map
tagger_tags = eval(tagger_model_meta['tags'])
@dataclass
class Tag:
lable: str
prob: float
def tagger_predict(image, score_threshold):
image = np.array(image)
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
s = 512
h, w = image.shape[:-1]
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
ph, pw = s - h, s - w
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
image = cv2.copyMakeBorder(
image, ph // 2, ph - ph // 2, pw // 2, pw - pw // 2, cv2.BORDER_REPLICATE)
image = image.astype(np.float32) / 255
image = image[np.newaxis, :]
probs = tagger_model.run(None, {"input_1": image})[0][0]
probs = probs.astype(np.float32)
res = []
for prob, label in zip(probs.tolist(), tagger_tags):
if prob < score_threshold:
continue
res.append(Tag(label, prob))
sorted_res = sorted(res, key=lambda Tag: Tag.prob, reverse=True)
output_string = ""
output_string_without_prob = ""
for iter in sorted_res:
output_string += iter.lable + f" : {iter.prob:.2f}\n"
output_string_without_prob += iter.lable + "\n"
output_string = output_string[:-1]
output_string_without_prob = output_string_without_prob[:-1]
return (output_string_without_prob, output_string)
def gradio_wrapper(image, score_threshold):
return tagger_predict(image, score_threshold)
inputs = gr.inputs.Image()
slider = gr.inputs.Slider(minimum=0, maximum=1, default=0.5)
outputs = gr.outputs.Textbox()
outputs_list = gr.outputs.Textbox()
iface = gr.Interface(fn=gradio_wrapper,
inputs=[inputs, slider],
outputs=[outputs, outputs_list])
iface.launch()