Spaces:
Running
Running
File size: 6,573 Bytes
a895164 2ff0eb9 a895164 2ff0eb9 5ddd792 2ff0eb9 5ddd792 a895164 25d0cb0 2ff0eb9 98f45a0 5ddd792 fa0c3bc 5ddd792 fa0c3bc 5ddd792 fa0c3bc 5ddd792 fa0c3bc 5ddd792 089299b 25d0cb0 089299b 415fe71 2840d3f 089299b 53a8189 5ddd792 2ff0eb9 25d0cb0 a895164 2ff0eb9 a895164 5ddd792 2ff0eb9 5ddd792 a895164 5ddd792 a895164 25d0cb0 98f45a0 2840d3f 20e0c60 089299b 415fe71 b464b4e d8d68aa 53a8189 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# import os
# import sys
# import openai
# from langchain.chains import ConversationalRetrievalChain, RetrievalQA
# from langchain.chat_models import ChatOpenAI
# from langchain.document_loaders import DirectoryLoader, TextLoader
# from langchain.embeddings import OpenAIEmbeddings
# from langchain.indexes import VectorstoreIndexCreator
# from langchain.indexes.vectorstore import VectorStoreIndexWrapper
# from langchain.llms import OpenAI
# from langchain.text_splitter import CharacterTextSplitter
# __import__('pysqlite3')
# import sys
# sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
# from langchain.vectorstores import Chroma
# import gradio as gr
# os.environ["OPENAI_API_KEY"] = os.getenv("OPENAPIKEY")
# docs = []
# for f in os.listdir("multiple_docs"):
# if f.endswith(".pdf"):
# pdf_path = "./multiple_docs/" + f
# loader = PyPDFLoader(pdf_path)
# docs.extend(loader.load())
# elif f.endswith('.docx') or f.endswith('.doc'):
# doc_path = "./multiple_docs/" + f
# loader = Docx2txtLoader(doc_path)
# docs.extend(loader.load())
# elif f.endswith('.txt'):
# text_path = "./multiple_docs/" + f
# loader = TextLoader(text_path)
# docs.extend(loader.load())
# splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
# docs = splitter.split_documents(docs)
# # Convert the document chunks to embedding and save them to the vector store
# vectorstore = Chroma.from_documents(docs, embedding=OpenAIEmbeddings(), persist_directory="./data")
# vectorstore.persist()
# chain = ConversationalRetrievalChain.from_llm(
# ChatOpenAI(temperature=0.7, model_name='gpt-3.5-turbo'),
# retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
# return_source_documents=True,
# verbose=False
# )
# chat_history = []
# with gr.Blocks() as demo:
# chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my previous or most recent experience, where I'm eligible to work, when I can start work, what NLP skills I have, and much more! you can chat with me directly in multiple languages")],avatar_images=["./multiple_docs/Guest.jpg","./multiple_docs/Thierry Picture.jpg"])
# msg = gr.Textbox()
# clear = gr.Button("Clear")
# chat_history = []
# def user(query, chat_history):
# # print("User query:", query)
# # print("Chat history:", chat_history)
# # Convert chat history to list of tuples
# chat_history_tuples = []
# for message in chat_history:
# chat_history_tuples.append((message[0], message[1]))
# # Get result from QA chain
# result = chain({"question": query, "chat_history": chat_history_tuples})
# # Append user message and response to chat history
# chat_history.append((query, result["answer"]))
# # print("Updated chat history:", chat_history)
# return gr.update(value=""), chat_history
# msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
# clear.click(lambda: None, None, chatbot, queue=False)
# demo.launch(debug=True)
import os
import sys
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import DirectoryLoader, TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
import gradio as gr
from transformers import pipeline
from sentence_transformers import SentenceTransformer
__import__('pysqlite3')
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
docs = []
for f in os.listdir("multiple_docs"):
if f.endswith(".pdf"):
pdf_path = "./multiple_docs/" + f
loader = PyPDFLoader(pdf_path)
docs.extend(loader.load())
elif f.endswith('.docx') or f.endswith('.doc'):
doc_path = "./multiple_docs/" + f
loader = Docx2txtLoader(doc_path)
docs.extend(loader.load())
elif f.endswith('.txt'):
text_path = "./multiple_docs/" + f
loader = TextLoader(text_path)
docs.extend(loader.load())
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
docs = splitter.split_documents(docs)
# Extract the content from documents and create embeddings
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
texts = [doc.page_content for doc in docs]
embeddings = embedding_model.encode(texts).tolist() # Convert numpy arrays to lists
# Create a Chroma vector store and add documents and their embeddings
vectorstore = Chroma(persist_directory="./data")
for i, (text, embedding) in enumerate(zip(texts, embeddings)):
vectorstore.add_texts([text], metadatas=[{"id": i}], embeddings=[embedding])
vectorstore.persist()
# Load the Hugging Face model for text generation
generator = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B")
class HuggingFaceLLMWrapper:
def __init__(self, generator):
self.generator = generator
def __call__(self, prompt, max_length=512):
result = self.generator(prompt, max_length=max_length, num_return_sequences=1)
return result[0]['generated_text']
llm = HuggingFaceLLMWrapper(generator)
chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
return_source_documents=True,
verbose=False
)
chat_history = []
with gr.Blocks() as demo:
chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my previous or most recent experience, where I'm eligible to work, when I can start work, what NLP skills I have, and much more! you can chat with me directly in multiple languages")], avatar_images=["./multiple_docs/Guest.jpg","./multiple_docs/Thierry Picture.jpg"])
msg = gr.Textbox()
clear = gr.Button("Clear")
chat_history = []
def user(query, chat_history):
# Convert chat history to list of tuples
chat_history_tuples = []
for message in chat_history:
chat_history_tuples.append((message[0], message[1]))
# Get result from QA chain
result = chain({"question": query, "chat_history": chat_history_tuples})
# Append user message and response to chat history
chat_history.append((query, result["answer"]))
return gr.update(value=""), chat_history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch(debug=True)
|