Spaces:
Running
Running
import os | |
import sys | |
import openai | |
from langchain.chains import ConversationalRetrievalChain, RetrievalQA | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import DirectoryLoader, TextLoader | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.indexes import VectorstoreIndexCreator | |
from langchain.indexes.vectorstore import VectorStoreIndexWrapper | |
from langchain.llms import OpenAI | |
from langchain.text_splitter import CharacterTextSplitter | |
__import__('pysqlite3') | |
import sys | |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') | |
from langchain.vectorstores import Chroma | |
import gradio as gr | |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAPIKEY") | |
docs = [] | |
for f in os.listdir("multiple_docs"): | |
if f.endswith(".pdf"): | |
pdf_path = "./multiple_docs/" + f | |
loader = PyPDFLoader(pdf_path) | |
docs.extend(loader.load()) | |
elif f.endswith('.docx') or f.endswith('.doc'): | |
doc_path = "./multiple_docs/" + f | |
loader = Docx2txtLoader(doc_path) | |
docs.extend(loader.load()) | |
elif f.endswith('.txt'): | |
text_path = "./multiple_docs/" + f | |
loader = TextLoader(text_path) | |
docs.extend(loader.load()) | |
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10) | |
docs = splitter.split_documents(docs) | |
# Convert the document chunks to embedding and save them to the vector store | |
vectorstore = Chroma.from_documents(docs, embedding=OpenAIEmbeddings(), persist_directory="./data") | |
vectorstore.persist() | |
chain = ConversationalRetrievalChain.from_llm( | |
ChatOpenAI(temperature=0.7, model_name='gpt-3.5-turbo'), | |
retriever=vectorstore.as_retriever(search_kwargs={'k': 6}), | |
return_source_documents=True, | |
verbose=False | |
) | |
chat_history = [] | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment relaged questions such as my previous experience, where i'm eligible to work, when I can start work, my most recent experience, what NLP skills I have, and much more!")],avatar_images=["./input/avatar/Guest.jpg","./input/avatar/Thierry Picture.jpg"]) | |
msg = gr.Textbox() | |
clear = gr.Button("Clear") | |
chat_history = [] | |
def user(query, chat_history): | |
# print("User query:", query) | |
# print("Chat history:", chat_history) | |
# Convert chat history to list of tuples | |
chat_history_tuples = [] | |
for message in chat_history: | |
chat_history_tuples.append((message[0], message[1])) | |
# Get result from QA chain | |
result = chain({"question": query, "chat_history": chat_history_tuples}) | |
# Append user message and response to chat history | |
chat_history.append((query, result["answer"])) | |
# print("Updated chat history:", chat_history) | |
return gr.update(value=""), chat_history | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.launch(debug=True) |