Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -89,6 +89,7 @@ from langchain.vectorstores import Chroma
|
|
89 |
import gradio as gr
|
90 |
from transformers import pipeline
|
91 |
from sentence_transformers import SentenceTransformer
|
|
|
92 |
|
93 |
__import__('pysqlite3')
|
94 |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
@@ -118,7 +119,7 @@ texts = [doc.page_content for doc in docs]
|
|
118 |
embeddings = embedding_model.encode(texts).tolist() # Convert numpy arrays to lists
|
119 |
|
120 |
# Create a Chroma vector store and add documents and their embeddings
|
121 |
-
vectorstore = Chroma(persist_directory="./db")
|
122 |
vectorstore.add_texts(texts=texts, metadatas=[{"id": i} for i in range(len(texts))], embeddings=embeddings)
|
123 |
vectorstore.persist()
|
124 |
|
|
|
89 |
import gradio as gr
|
90 |
from transformers import pipeline
|
91 |
from sentence_transformers import SentenceTransformer
|
92 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
93 |
|
94 |
__import__('pysqlite3')
|
95 |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
|
|
119 |
embeddings = embedding_model.encode(texts).tolist() # Convert numpy arrays to lists
|
120 |
|
121 |
# Create a Chroma vector store and add documents and their embeddings
|
122 |
+
vectorstore = Chroma(persist_directory="./db",embedding_function=OpenAIEmbeddings())
|
123 |
vectorstore.add_texts(texts=texts, metadatas=[{"id": i} for i in range(len(texts))], embeddings=embeddings)
|
124 |
vectorstore.persist()
|
125 |
|