Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,98 +1,24 @@
|
|
1 |
-
# import os
|
2 |
-
# import sys
|
3 |
-
# import openai
|
4 |
-
# from langchain.chains import ConversationalRetrievalChain, RetrievalQA
|
5 |
-
# from langchain.chat_models import ChatOpenAI
|
6 |
-
# from langchain.document_loaders import DirectoryLoader, TextLoader
|
7 |
-
# from langchain.embeddings import OpenAIEmbeddings
|
8 |
-
# from langchain.indexes import VectorstoreIndexCreator
|
9 |
-
# from langchain.indexes.vectorstore import VectorStoreIndexWrapper
|
10 |
-
# from langchain.llms import OpenAI
|
11 |
-
# from langchain.text_splitter import CharacterTextSplitter
|
12 |
-
|
13 |
-
# __import__('pysqlite3')
|
14 |
-
# import sys
|
15 |
-
# sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
16 |
-
|
17 |
-
# from langchain.vectorstores import Chroma
|
18 |
-
# import gradio as gr
|
19 |
-
|
20 |
-
# os.environ["OPENAI_API_KEY"] = os.getenv("OPENAPIKEY")
|
21 |
-
|
22 |
-
# docs = []
|
23 |
-
|
24 |
-
# for f in os.listdir("multiple_docs"):
|
25 |
-
# if f.endswith(".pdf"):
|
26 |
-
# pdf_path = "./multiple_docs/" + f
|
27 |
-
# loader = PyPDFLoader(pdf_path)
|
28 |
-
# docs.extend(loader.load())
|
29 |
-
# elif f.endswith('.docx') or f.endswith('.doc'):
|
30 |
-
# doc_path = "./multiple_docs/" + f
|
31 |
-
# loader = Docx2txtLoader(doc_path)
|
32 |
-
# docs.extend(loader.load())
|
33 |
-
# elif f.endswith('.txt'):
|
34 |
-
# text_path = "./multiple_docs/" + f
|
35 |
-
# loader = TextLoader(text_path)
|
36 |
-
# docs.extend(loader.load())
|
37 |
-
|
38 |
-
# splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
39 |
-
# docs = splitter.split_documents(docs)
|
40 |
-
|
41 |
-
# # Convert the document chunks to embedding and save them to the vector store
|
42 |
-
# vectorstore = Chroma.from_documents(docs, embedding=OpenAIEmbeddings(), persist_directory="./data")
|
43 |
-
# vectorstore.persist()
|
44 |
-
|
45 |
-
# chain = ConversationalRetrievalChain.from_llm(
|
46 |
-
# ChatOpenAI(temperature=0.7, model_name='gpt-3.5-turbo'),
|
47 |
-
# retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
|
48 |
-
# return_source_documents=True,
|
49 |
-
# verbose=False
|
50 |
-
# )
|
51 |
-
|
52 |
-
# chat_history = []
|
53 |
-
|
54 |
-
# with gr.Blocks() as demo:
|
55 |
-
# chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my previous or most recent experience, where I'm eligible to work, when I can start work, what NLP skills I have, and much more! you can chat with me directly in multiple languages")],avatar_images=["./multiple_docs/Guest.jpg","./multiple_docs/Thierry Picture.jpg"])
|
56 |
-
# msg = gr.Textbox()
|
57 |
-
# clear = gr.Button("Clear")
|
58 |
-
# chat_history = []
|
59 |
-
|
60 |
-
# def user(query, chat_history):
|
61 |
-
# # print("User query:", query)
|
62 |
-
# # print("Chat history:", chat_history)
|
63 |
-
|
64 |
-
# # Convert chat history to list of tuples
|
65 |
-
# chat_history_tuples = []
|
66 |
-
# for message in chat_history:
|
67 |
-
# chat_history_tuples.append((message[0], message[1]))
|
68 |
-
|
69 |
-
# # Get result from QA chain
|
70 |
-
# result = chain({"question": query, "chat_history": chat_history_tuples})
|
71 |
-
|
72 |
-
# # Append user message and response to chat history
|
73 |
-
# chat_history.append((query, result["answer"]))
|
74 |
-
# # print("Updated chat history:", chat_history)
|
75 |
-
|
76 |
-
# return gr.update(value=""), chat_history
|
77 |
-
|
78 |
-
# msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
|
79 |
-
# clear.click(lambda: None, None, chatbot, queue=False)
|
80 |
-
|
81 |
-
# demo.launch(debug=True)
|
82 |
-
|
83 |
import os
|
84 |
import sys
|
85 |
-
|
86 |
-
from langchain.
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
from langchain.text_splitter import CharacterTextSplitter
|
88 |
-
from langchain.vectorstores import Chroma
|
89 |
-
import gradio as gr
|
90 |
-
from transformers import pipeline
|
91 |
-
from sentence_transformers import SentenceTransformer
|
92 |
|
93 |
__import__('pysqlite3')
|
|
|
94 |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
95 |
|
|
|
|
|
|
|
|
|
|
|
96 |
docs = []
|
97 |
|
98 |
for f in os.listdir("multiple_docs"):
|
@@ -112,31 +38,12 @@ for f in os.listdir("multiple_docs"):
|
|
112 |
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
113 |
docs = splitter.split_documents(docs)
|
114 |
|
115 |
-
#
|
116 |
-
|
117 |
-
texts = [doc.page_content for doc in docs]
|
118 |
-
embeddings = embedding_model.encode(texts).tolist() # Convert numpy arrays to lists
|
119 |
-
|
120 |
-
# Create a Chroma vector store and add documents and their embeddings
|
121 |
-
vectorstore = Chroma(persist_directory="./db", embedding_function=embedding_model.encode)
|
122 |
-
vectorstore.add_texts(texts=texts, metadatas=[{"id": i} for i in range(len(texts))], embeddings=embeddings)
|
123 |
vectorstore.persist()
|
124 |
|
125 |
-
# Load the Hugging Face model for text generation
|
126 |
-
generator = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B")
|
127 |
-
|
128 |
-
class HuggingFaceLLMWrapper:
|
129 |
-
def __init__(self, generator):
|
130 |
-
self.generator = generator
|
131 |
-
|
132 |
-
def __call__(self, prompt, max_length=512):
|
133 |
-
result = self.generator(prompt, max_length=max_length, num_return_sequences=1)
|
134 |
-
return result[0]['generated_text']
|
135 |
-
|
136 |
-
llm = HuggingFaceLLMWrapper(generator)
|
137 |
-
|
138 |
chain = ConversationalRetrievalChain.from_llm(
|
139 |
-
|
140 |
retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
|
141 |
return_source_documents=True,
|
142 |
verbose=False
|
@@ -145,12 +52,15 @@ chain = ConversationalRetrievalChain.from_llm(
|
|
145 |
chat_history = []
|
146 |
|
147 |
with gr.Blocks() as demo:
|
148 |
-
chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my previous or most recent experience, where I'm eligible to work, when I can start work, what NLP skills I have, and much more! you can chat with me directly in multiple languages")],
|
149 |
msg = gr.Textbox()
|
150 |
clear = gr.Button("Clear")
|
151 |
chat_history = []
|
152 |
|
153 |
def user(query, chat_history):
|
|
|
|
|
|
|
154 |
# Convert chat history to list of tuples
|
155 |
chat_history_tuples = []
|
156 |
for message in chat_history:
|
@@ -161,6 +71,7 @@ with gr.Blocks() as demo:
|
|
161 |
|
162 |
# Append user message and response to chat history
|
163 |
chat_history.append((query, result["answer"]))
|
|
|
164 |
|
165 |
return gr.update(value=""), chat_history
|
166 |
|
@@ -169,6 +80,95 @@ with gr.Blocks() as demo:
|
|
169 |
|
170 |
demo.launch(debug=True)
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
+
import openai
|
4 |
+
from langchain.chains import ConversationalRetrievalChain, RetrievalQA
|
5 |
+
from langchain.chat_models import ChatOpenAI
|
6 |
+
from langchain.document_loaders import DirectoryLoader, TextLoader
|
7 |
+
from langchain.embeddings import OpenAIEmbeddings
|
8 |
+
from langchain.indexes import VectorstoreIndexCreator
|
9 |
+
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
|
10 |
+
from langchain.llms import OpenAI
|
11 |
from langchain.text_splitter import CharacterTextSplitter
|
|
|
|
|
|
|
|
|
12 |
|
13 |
__import__('pysqlite3')
|
14 |
+
import sys
|
15 |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
16 |
|
17 |
+
from langchain.vectorstores import Chroma
|
18 |
+
import gradio as gr
|
19 |
+
|
20 |
+
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAPIKEY")
|
21 |
+
|
22 |
docs = []
|
23 |
|
24 |
for f in os.listdir("multiple_docs"):
|
|
|
38 |
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
39 |
docs = splitter.split_documents(docs)
|
40 |
|
41 |
+
# Convert the document chunks to embedding and save them to the vector store
|
42 |
+
vectorstore = Chroma.from_documents(docs, embedding=OpenAIEmbeddings(), persist_directory="./data")
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
vectorstore.persist()
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
chain = ConversationalRetrievalChain.from_llm(
|
46 |
+
ChatOpenAI(temperature=0.7, model_name='gpt-3.5-turbo'),
|
47 |
retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
|
48 |
return_source_documents=True,
|
49 |
verbose=False
|
|
|
52 |
chat_history = []
|
53 |
|
54 |
with gr.Blocks() as demo:
|
55 |
+
chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my previous or most recent experience, where I'm eligible to work, when I can start work, what NLP skills I have, and much more! you can chat with me directly in multiple languages")],avatar_images=["./multiple_docs/Guest.jpg","./multiple_docs/Thierry Picture.jpg"])
|
56 |
msg = gr.Textbox()
|
57 |
clear = gr.Button("Clear")
|
58 |
chat_history = []
|
59 |
|
60 |
def user(query, chat_history):
|
61 |
+
# print("User query:", query)
|
62 |
+
# print("Chat history:", chat_history)
|
63 |
+
|
64 |
# Convert chat history to list of tuples
|
65 |
chat_history_tuples = []
|
66 |
for message in chat_history:
|
|
|
71 |
|
72 |
# Append user message and response to chat history
|
73 |
chat_history.append((query, result["answer"]))
|
74 |
+
# print("Updated chat history:", chat_history)
|
75 |
|
76 |
return gr.update(value=""), chat_history
|
77 |
|
|
|
80 |
|
81 |
demo.launch(debug=True)
|
82 |
|
83 |
+
# import os
|
84 |
+
# import sys
|
85 |
+
# from langchain.chains import ConversationalRetrievalChain
|
86 |
+
# from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
|
87 |
+
# from langchain.text_splitter import CharacterTextSplitter
|
88 |
+
# from langchain.vectorstores import Chroma
|
89 |
+
# import gradio as gr
|
90 |
+
# from transformers import pipeline
|
91 |
+
# from sentence_transformers import SentenceTransformer
|
92 |
+
|
93 |
+
# __import__('pysqlite3')
|
94 |
+
# sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
95 |
+
|
96 |
+
# docs = []
|
97 |
+
|
98 |
+
# for f in os.listdir("multiple_docs"):
|
99 |
+
# if f.endswith(".pdf"):
|
100 |
+
# pdf_path = "./multiple_docs/" + f
|
101 |
+
# loader = PyPDFLoader(pdf_path)
|
102 |
+
# docs.extend(loader.load())
|
103 |
+
# elif f.endswith('.docx') or f.endswith('.doc'):
|
104 |
+
# doc_path = "./multiple_docs/" + f
|
105 |
+
# loader = Docx2txtLoader(doc_path)
|
106 |
+
# docs.extend(loader.load())
|
107 |
+
# elif f.endswith('.txt'):
|
108 |
+
# text_path = "./multiple_docs/" + f
|
109 |
+
# loader = TextLoader(text_path)
|
110 |
+
# docs.extend(loader.load())
|
111 |
+
|
112 |
+
# splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
113 |
+
# docs = splitter.split_documents(docs)
|
114 |
+
|
115 |
+
# # Extract the content from documents and create embeddings
|
116 |
+
# embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
117 |
+
# texts = [doc.page_content for doc in docs]
|
118 |
+
# embeddings = embedding_model.encode(texts).tolist() # Convert numpy arrays to lists
|
119 |
+
|
120 |
+
# # Create a Chroma vector store and add documents and their embeddings
|
121 |
+
# vectorstore = Chroma(persist_directory="./db", embedding_function=embedding_model.encode)
|
122 |
+
# vectorstore.add_texts(texts=texts, metadatas=[{"id": i} for i in range(len(texts))], embeddings=embeddings)
|
123 |
+
# vectorstore.persist()
|
124 |
+
|
125 |
+
# # Load the Hugging Face model for text generation
|
126 |
+
# generator = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B")
|
127 |
+
|
128 |
+
# class HuggingFaceLLMWrapper:
|
129 |
+
# def __init__(self, generator):
|
130 |
+
# self.generator = generator
|
131 |
+
|
132 |
+
# def __call__(self, prompt, max_length=512):
|
133 |
+
# result = self.generator(prompt, max_length=max_length, num_return_sequences=1)
|
134 |
+
# return result[0]['generated_text']
|
135 |
+
|
136 |
+
# llm = HuggingFaceLLMWrapper(generator)
|
137 |
+
|
138 |
+
# chain = ConversationalRetrievalChain.from_llm(
|
139 |
+
# llm,
|
140 |
+
# retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
|
141 |
+
# return_source_documents=True,
|
142 |
+
# verbose=False
|
143 |
+
# )
|
144 |
+
|
145 |
+
# chat_history = []
|
146 |
+
|
147 |
+
# with gr.Blocks() as demo:
|
148 |
+
# chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my previous or most recent experience, where I'm eligible to work, when I can start work, what NLP skills I have, and much more! you can chat with me directly in multiple languages")], avatar_images=["./multiple_docs/Guest.jpg","./multiple_docs/Thierry Picture.jpg"])
|
149 |
+
# msg = gr.Textbox()
|
150 |
+
# clear = gr.Button("Clear")
|
151 |
+
# chat_history = []
|
152 |
+
|
153 |
+
# def user(query, chat_history):
|
154 |
+
# # Convert chat history to list of tuples
|
155 |
+
# chat_history_tuples = []
|
156 |
+
# for message in chat_history:
|
157 |
+
# chat_history_tuples.append((message[0], message[1]))
|
158 |
+
|
159 |
+
# # Get result from QA chain
|
160 |
+
# result = chain({"question": query, "chat_history": chat_history_tuples})
|
161 |
+
|
162 |
+
# # Append user message and response to chat history
|
163 |
+
# chat_history.append((query, result["answer"]))
|
164 |
+
|
165 |
+
# return gr.update(value=""), chat_history
|
166 |
+
|
167 |
+
# msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
|
168 |
+
# clear.click(lambda: None, None, chatbot, queue=False)
|
169 |
+
|
170 |
+
# demo.launch(debug=True)
|
171 |
+
|
172 |
|
173 |
|
174 |
|