Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -117,8 +117,12 @@ embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
117 |
texts = [doc.page_content for doc in docs]
|
118 |
embeddings = embedding_model.encode(texts).tolist() # Convert numpy arrays to lists
|
119 |
|
|
|
|
|
|
|
|
|
120 |
# Create a Chroma vector store with an embedding function and add documents and their embeddings
|
121 |
-
vectorstore = Chroma(persist_directory="./db", embedding_function=
|
122 |
vectorstore.add_texts(texts=texts, metadatas=[{"id": i} for i in range(len(texts))], embeddings=embeddings)
|
123 |
vectorstore.persist()
|
124 |
|
@@ -182,3 +186,4 @@ demo.launch(debug=True)
|
|
182 |
|
183 |
|
184 |
|
|
|
|
117 |
texts = [doc.page_content for doc in docs]
|
118 |
embeddings = embedding_model.encode(texts).tolist() # Convert numpy arrays to lists
|
119 |
|
120 |
+
# Create a wrapper function for the embedding function
|
121 |
+
def embedding_function(texts):
|
122 |
+
return embedding_model.encode(texts).tolist()
|
123 |
+
|
124 |
# Create a Chroma vector store with an embedding function and add documents and their embeddings
|
125 |
+
vectorstore = Chroma(persist_directory="./db", embedding_function=embedding_function)
|
126 |
vectorstore.add_texts(texts=texts, metadatas=[{"id": i} for i in range(len(texts))], embeddings=embeddings)
|
127 |
vectorstore.persist()
|
128 |
|
|
|
186 |
|
187 |
|
188 |
|
189 |
+
|