Spaces:
Runtime error
Runtime error
File size: 26,520 Bytes
fa6856c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
import copy
import gc
import tempfile
import unittest
from functools import lru_cache
import torch
import transformers
from hypothesis import given, settings
from hypothesis import strategies as st
from trlx.data.default_configs import default_ilql_config
from trlx.models.modeling_ilql import (
AutoModelForCausalLMWithILQLHeads,
AutoModelForSeq2SeqLMWithILQLHeads,
ILQLBatch,
ILQLConfig,
ILQLHeads,
batched_index_select,
)
from trlx.models.modeling_ppo import (
AutoModelForCausalLMWithHydraValueHead,
AutoModelForCausalLMWithValueHead,
AutoModelForSeq2SeqLMWithHydraValueHead,
AutoModelForSeq2SeqLMWithValueHead,
)
from trlx.trainer.accelerate_ilql_trainer import make_experience
AUTO_CAUSAL_LM_PATHS = ["gpt2", "EleutherAI/pythia-160m", "facebook/opt-125m"]
AUTO_SEQ2SEQ_LM_PATHS = ["t5-small", "google/flan-t5-small"]
# Value Head Modeling Tests
class TestAutoModelForCausalLMWithValueHead(unittest.TestCase):
_auto_model_class = AutoModelForCausalLMWithValueHead
_supported_args = {}
def setUp(self):
self.text = "Once upon a time there was a happy goose named Louis. He liked to eat bananas."
def tearDown(self):
gc.collect() # Try to free up memory
def _create_inputs(self, model_path):
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
tokenizer.padding_side = "left"
tokenized = tokenizer(self.text, truncation=True, padding="max_length", max_length=4, return_tensors="pt")
return dict(input_ids=tokenized.input_ids, attention_mask=tokenized.attention_mask)
def test_forward(self):
for model_path in AUTO_CAUSAL_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
inputs = self._create_inputs(model_path)
# Ensure that the `forward` method doesn't throw an error on generic inputs
try:
model(**inputs)
except Exception as e:
self.assertFalse(True, msg=e)
def test_generate(self):
for model_path in AUTO_CAUSAL_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
inputs = self._create_inputs(model_path)
# Ensure that the `generate` method doesn't throw an error on generic inputs
try:
model.generate(**inputs, return_dict=True, output_hidden_states=True)
except Exception as e:
self.assertFalse(True, msg=e)
def test_save_load(self):
for model_path in AUTO_CAUSAL_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
modified_model = copy.deepcopy(model)
# Manually modify value head parameters
modified_model.v_head[-1].bias = torch.nn.Parameter(torch.tensor([6000053.33]))
with tempfile.TemporaryDirectory() as tmpdirname:
modified_model.save_pretrained(tmpdirname)
loaded_model = self._auto_model_class.from_pretrained(tmpdirname)
# Check that the loaded model state dict is the same as the saved model state dict
loaded_state_dict = loaded_model.state_dict()
self.assertEqual(modified_model.state_dict().keys(), loaded_state_dict.keys())
for name, saved_state in modified_model.state_dict().items():
self.assertTrue(torch.all(torch.isclose(saved_state, loaded_state_dict[name])))
# Assert loaded states are not the same as the original unmodified pretrained model
self.assertFalse(torch.all(torch.isclose(modified_model.v_head[-1].bias, model.v_head[-1].bias)))
def test_from_config(self):
for model_path in AUTO_CAUSAL_LM_PATHS:
config = transformers.AutoConfig.from_pretrained(model_path)
# Modify the config to ensure the model is initialized from the custom config
config.vocab_size = 2
model = self._auto_model_class.from_config(config, **self._supported_args)
self.assertEqual(model.base_model.get_output_embeddings().out_features, config.vocab_size)
class TestAutoModelForCausalLMWithHydraValueHead(TestAutoModelForCausalLMWithValueHead):
_auto_model_class = AutoModelForCausalLMWithHydraValueHead
_supported_args = {"num_layers_unfrozen": 2} # TODO: Test various values
def test_forward(self):
for model_path in AUTO_CAUSAL_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
inputs = self._create_inputs(model_path)
with torch.no_grad():
# Compare logits and hidden states from frozen and unfrozen heads
unfrozen_outputs = model(**inputs, return_dict=True, output_hidden_states=True)
unfrozen_last_hidden_state = unfrozen_outputs.hidden_states[-1]
unfrozen_logits = unfrozen_outputs.logits
frozen_outputs = model.forward_hydra(**inputs, return_dict=True, output_hidden_states=True)
frozen_last_hidden_state = frozen_outputs.hidden_states[-1]
frozen_logits = frozen_outputs.logits
hs_diff = torch.sum(unfrozen_last_hidden_state - frozen_last_hidden_state).item()
logits_diff = torch.sum(unfrozen_logits - frozen_logits).item()
self.assertEqual(hs_diff, 0)
self.assertEqual(logits_diff, 0)
def test_lm_heads(self):
for model_path in AUTO_CAUSAL_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
inputs = self._create_inputs(model_path)
# Compare frozen and unfrozen logits
with torch.no_grad():
unfrozen_outputs = model(**inputs, return_dict=True, output_hidden_states=True)
unfrozen_logits = unfrozen_outputs.logits
frozen_logits = model.frozen_head.lm_head(unfrozen_outputs.hidden_states[-1].to(torch.float32))
diff = torch.sum(unfrozen_logits - frozen_logits).item()
self.assertEqual(diff, 0)
def test_frozen_head(self):
for model_path in AUTO_CAUSAL_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
# Ensure that all parameters of the hyrda `model.frozen_head` are actually frozen
for parameter in model.frozen_head.parameters():
self.assertTrue(parameter.requires_grad is False)
class TestAutoModelForSeq2SeqLMWithValueHead(unittest.TestCase):
_auto_model_class = AutoModelForSeq2SeqLMWithValueHead
_supported_args = {}
def setUp(self):
self.encoder_text = "Translate this text to French: Hello, my dog is cute"
self.decoder_text = "Bonjour, mon chien est mignon"
def tearDown(self):
gc.collect() # Try to free up memory
def _create_inputs(self, model_path):
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
tokenizer.sep_token = "<sep>"
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
encoder_inputs = tokenizer(
self.encoder_text, truncation=True, padding="max_length", max_length=10, return_tensors="pt"
)
decoder_inputs = tokenizer(self.decoder_text, return_tensors="pt")
return {
**encoder_inputs,
"decoder_input_ids": decoder_inputs.input_ids,
"decoder_attention_mask": decoder_inputs.attention_mask,
}
def test_forward(self):
for model_path in AUTO_SEQ2SEQ_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
inputs = self._create_inputs(model_path)
# Ensure that the `forward` method doesn't throw an error on generic inputs
try:
model(**inputs)
except Exception as e:
self.assertFalse(True, msg=e)
def test_generate(self):
for model_path in AUTO_SEQ2SEQ_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
inputs = self._create_inputs(model_path)
# Ensure that the `generate` method doesn't throw an error on generic inputs
try:
model.generate(inputs["input_ids"])
except Exception as e:
self.assertFalse(True, msg=e)
def test_save_load(self):
for model_path in AUTO_SEQ2SEQ_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
modified_model = copy.deepcopy(model)
# Manually modify value head parameters
modified_model.v_head[-1].bias = torch.nn.Parameter(torch.tensor([6000053.33]))
with tempfile.TemporaryDirectory() as tmpdirname:
modified_model.save_pretrained(tmpdirname)
loaded_model = self._auto_model_class.from_pretrained(tmpdirname)
# Check that the loaded model state dict is the same as the saved model state dict
loaded_state_dict = loaded_model.state_dict()
self.assertEqual(modified_model.state_dict().keys(), loaded_state_dict.keys())
for name, saved_state in modified_model.state_dict().items():
self.assertTrue(torch.all(torch.isclose(saved_state, loaded_state_dict[name])))
# Assert loaded states are not the same as the original unmodified pretrained model
self.assertFalse(torch.all(torch.isclose(modified_model.v_head[-1].bias, model.v_head[-1].bias)))
def test_from_config(self):
for model_path in AUTO_SEQ2SEQ_LM_PATHS:
config = transformers.AutoConfig.from_pretrained(model_path)
# Modify the config to ensure the model is initialized from the custom config
config.vocab_size = 2
model = self._auto_model_class.from_config(config, **self._supported_args)
self.assertEqual(model.base_model.get_output_embeddings().out_features, config.vocab_size)
class TestAutoModelForSeq2SeqLMWithHydraValueHead(TestAutoModelForSeq2SeqLMWithValueHead):
_auto_model_class = AutoModelForSeq2SeqLMWithHydraValueHead
_supported_args = {"num_layers_unfrozen": 2} # TODO: Test various values
@unittest.skip("TODO: Final hidden states are not the same for frozen and unfrozen T5 heads")
def test_forward(self):
for model_path in AUTO_SEQ2SEQ_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
inputs = self._create_inputs(model_path)
with torch.no_grad():
# Compare logits and hidden states from frozen and unfrozen heads
unfrozen_outputs = model(**inputs, return_dict=True, output_hidden_states=True)
unfrozen_last_hidden_state = unfrozen_outputs.decoder_hidden_states[-1]
unfrozen_logits = unfrozen_outputs.logits
frozen_outputs = model.forward_hydra(**inputs, return_dict=True, output_hidden_states=True)
frozen_last_hidden_state = frozen_outputs.decoder_hidden_states[-1]
frozen_logits = frozen_outputs.logits
hs_diff = torch.sum(unfrozen_last_hidden_state - frozen_last_hidden_state).item()
logits_diff = torch.sum(unfrozen_logits - frozen_logits).item()
self.assertEqual(hs_diff, 0)
self.assertEqual(logits_diff, 0)
@unittest.skip("TODO: Final hidden states are not the same for frozen and unfrozen T5 heads")
def test_lm_heads(self):
for model_path in AUTO_SEQ2SEQ_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
inputs = self._create_inputs(model_path)
# Compare frozen and unfrozen logits
with torch.no_grad():
unfrozen_outputs = model(**inputs, return_dict=True, output_hidden_states=True)
unfrozen_logits = unfrozen_outputs.logits
last_hidden_state = unfrozen_outputs.decoder_hidden_states[-1]
frozen_logits = model.frozen_head.lm_head(last_hidden_state)
diff = torch.sum(unfrozen_logits - frozen_logits).item()
self.assertEqual(diff, 0)
def test_frozen_head(self):
for model_path in AUTO_SEQ2SEQ_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
# Ensure that all parameters of the hyrda `model.frozen_head` are actually frozen
for parameter in model.frozen_head.parameters():
self.assertTrue(parameter.requires_grad is False)
# ILQL Heads Modeling Tests
class TestAutoModelForCausalLMWithILQLHeads(unittest.TestCase):
_auto_model_class = AutoModelForCausalLMWithILQLHeads
_supported_args = {"two_qs": True, "alpha": 0.8} # TODO: Test various values
def setUp(self):
self.text = "Once upon a time there was a happy goose named Louis. He liked to eat bananas."
def tearDown(self):
gc.collect() # Try to free up memory
def _create_inputs(self, model_path):
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
tokenizer.padding_side = "left"
return tokenizer(self.text, truncation=True, padding="max_length", max_length=4, return_tensors="pt")
def test_forward(self):
for model_path in AUTO_CAUSAL_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
inputs = self._create_inputs(model_path)
# Ensure that the `forward` method doesn't throw an error on generic inputs
try:
model(**inputs)
except Exception as e:
self.assertFalse(True, msg=e)
def test_generate(self):
for model_path in AUTO_CAUSAL_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
inputs = self._create_inputs(model_path)
# Ensure that the `generate` method doesn't throw an error on generic inputs
try:
model.generate(**inputs)
except Exception as e:
self.assertFalse(True, msg=e)
def test_save_load(self):
for model_path in AUTO_CAUSAL_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
modified_model = copy.deepcopy(model)
# Manually modify value head parameters
modified_model.ilql_heads.q_heads[0][0].bias = torch.nn.Parameter(
torch.ones_like(modified_model.ilql_heads.q_heads[0][0].bias) * 600053.34
)
with tempfile.TemporaryDirectory() as tmpdirname:
modified_model.save_pretrained(tmpdirname)
loaded_model = self._auto_model_class.from_pretrained(tmpdirname)
# Check that the loaded model state dict is the same as the saved model state dict
loaded_state_dict = loaded_model.state_dict()
self.assertEqual(modified_model.state_dict().keys(), loaded_state_dict.keys())
for name, saved_state in modified_model.state_dict().items():
self.assertTrue(torch.all(torch.isclose(saved_state, loaded_state_dict[name])))
# Assert loaded states are not the same as the original unmodified pretrained model
self.assertFalse(
torch.all(
torch.isclose(modified_model.ilql_heads.q_heads[0][0].bias, model.ilql_heads.q_heads[0][0].bias)
)
)
def test_from_config(self):
for model_path in AUTO_CAUSAL_LM_PATHS:
config = transformers.AutoConfig.from_pretrained(model_path)
# Modify the config to ensure the model is initialized from the custom config
config.vocab_size = 2
model = self._auto_model_class.from_config(config, **self._supported_args)
self.assertEqual(model.base_model.get_output_embeddings().out_features, config.vocab_size)
class TestAutoModelForSeq2SeqLMWithILQLHeads(unittest.TestCase):
_auto_model_class = AutoModelForSeq2SeqLMWithILQLHeads
_supported_args = {"two_qs": True, "alpha": 0.8} # TODO: Test various values
def setUp(self):
self.text = "Once upon a time there was a happy goose named Louis. He liked to eat bananas."
def tearDown(self):
gc.collect() # Try to free up memory
def _create_inputs(self, model_path):
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
tokenizer.padding_side = "left"
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
inputs = tokenizer(self.text, truncation=True, padding="max_length", max_length=4, return_tensors="pt")
inputs["decoder_input_ids"] = torch.tensor([[tokenizer.pad_token_id]])
return inputs
def test_forward(self):
for model_path in AUTO_SEQ2SEQ_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
inputs = self._create_inputs(model_path)
# Ensure that the `forward` method doesn't throw an error on generic inputs
try:
model(**inputs)
except Exception as e:
self.assertFalse(True, msg=e)
def test_generate(self):
for model_path in AUTO_SEQ2SEQ_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
inputs = self._create_inputs(model_path)
inputs["pad_token_id"] = tokenizer.pad_token_id
inputs["eos_token_id"] = tokenizer.eos_token_id
# Ensure that the `generate` method doesn't throw an error on generic inputs
try:
model.generate(**inputs)
except Exception as e:
self.assertFalse(True, msg=e)
def test_save_load(self):
for model_path in AUTO_SEQ2SEQ_LM_PATHS:
model = self._auto_model_class.from_pretrained(model_path, **self._supported_args)
modified_model = copy.deepcopy(model)
# Manually modify value head parameters
modified_model.ilql_heads.q_heads[0][0].bias = torch.nn.Parameter(
torch.ones_like(modified_model.ilql_heads.q_heads[0][0].bias) * 600053.34
)
with tempfile.TemporaryDirectory() as tmpdirname:
modified_model.save_pretrained(tmpdirname)
loaded_model = self._auto_model_class.from_pretrained(tmpdirname)
# Check that the loaded model state dict is the same as the saved model state dict
loaded_state_dict = loaded_model.state_dict()
self.assertEqual(modified_model.state_dict().keys(), loaded_state_dict.keys())
for name, saved_state in modified_model.state_dict().items():
self.assertTrue(torch.all(torch.isclose(saved_state, loaded_state_dict[name])))
# Assert loaded states are not the same as the original unmodified pretrained model
self.assertFalse(
torch.all(
torch.isclose(modified_model.ilql_heads.q_heads[0][0].bias, model.ilql_heads.q_heads[0][0].bias)
)
)
def test_from_config(self):
for model_path in AUTO_SEQ2SEQ_LM_PATHS:
config = transformers.AutoConfig.from_pretrained(model_path)
# Modify the config to ensure the model is initialized from the custom config
config.vocab_size = 2
model = self._auto_model_class.from_config(config, **self._supported_args)
self.assertEqual(model.base_model.get_output_embeddings().out_features, config.vocab_size)
@given(st.integers(1, 100), st.integers(1, 100), st.integers(0, 100), st.integers(1, 100))
def test_batched_index_select(batch, seq_len, num_idxes, hidden):
x = torch.randn(batch, seq_len, hidden)
if seq_len > 0:
idxs = torch.randint(0, seq_len, (batch, num_idxes))
else:
idxs = torch.zeros(batch, num_idxes, dtype=torch.long)
out = batched_index_select(x, idxs, dim=1)
# Compute output using for loop
out2 = torch.zeros(batch, num_idxes, hidden)
for i in range(batch):
out2[i] = x[i, idxs[i]]
assert (out == out2).all()
@given(
st.integers(1, 32),
st.integers(1, 32),
st.integers(0, 32),
st.integers(0, 32),
st.integers(1, 32),
st.integers(1, 32),
st.booleans(),
)
def test_ilql_heads_indexing(batch_size, seq_len, num_action_idxs, num_state_idxs, hidden_size, vocab_size, two_qs):
heads = ILQLHeads(hidden_size, vocab_size, two_qs, alpha=1.0, dtype=torch.float32)
# heads(hidden_states, states_ixs, actions_ixs) should
# == heads(hidden_states) followed by indexing with states_ixs and actions_ixs
hidden_states = torch.randn(batch_size, seq_len, hidden_size)
states_ixs = torch.randint(0, seq_len, (batch_size, num_state_idxs))
actions_ixs = torch.randint(0, seq_len, (batch_size, num_action_idxs))
qs, target_qs, vs = heads(hidden_states, states_ixs, actions_ixs)
qs2, target_qs2, vs2 = heads(hidden_states)
assert len(qs2) == len(target_qs2) == len(qs)
qs2 = tuple(batched_index_select(q, actions_ixs, dim=1) for q in qs2)
target_qs2 = tuple(batched_index_select(q, actions_ixs, dim=1) for q in target_qs2)
vs2 = batched_index_select(vs2, states_ixs, dim=1)
assert all(torch.allclose(q, q2, atol=1e-06) for q, q2 in zip(qs, qs2))
assert all(torch.allclose(q, q2, atol=1e-06) for q, q2 in zip(target_qs, target_qs2))
assert torch.allclose(vs, vs2, atol=1e-06)
@given(
st.integers(1, 32),
st.integers(1, 32),
st.integers(0, 32),
st.integers(0, 32),
st.integers(1, 32),
st.integers(1, 32),
st.booleans(),
)
def test_ilql_heads_output_count_and_shape(
batch_size, seq_len, num_action_idxs, num_state_idxs, hidden_size, vocab_size, two_qs
):
heads = ILQLHeads(hidden_size, vocab_size, two_qs, alpha=1.0, dtype=torch.float32)
hidden_states = torch.randn(batch_size, seq_len, hidden_size)
states_ixs = torch.randint(0, seq_len, (batch_size, num_state_idxs))
actions_ixs = torch.randint(0, seq_len, (batch_size, num_action_idxs))
qs, target_qs, vs = heads(hidden_states, states_ixs, actions_ixs)
assert len(qs) == len(target_qs)
assert qs[0].shape == (batch_size, num_action_idxs, vocab_size)
assert target_qs[0].shape == (batch_size, num_action_idxs, vocab_size)
assert vs.shape == (batch_size, num_state_idxs, 1)
if two_qs:
assert len(qs) == 2
assert qs[1].shape == (batch_size, num_action_idxs, vocab_size)
assert target_qs[1].shape == (batch_size, num_action_idxs, vocab_size)
else:
assert len(qs) == 1
@given(
st.integers(1, 32),
st.integers(1, 32),
st.floats(0.0, 1.0),
st.booleans(),
)
def test_ilql_heads_alpha(hidden_size, vocab_size, alpha, two_qs):
heads = ILQLHeads(hidden_size, vocab_size, two_qs, alpha=alpha, dtype=torch.float32)
for q_head in heads.q_heads:
for param in q_head.parameters():
param.data.copy_(torch.ones_like(param.data))
for target_q_head in heads.target_q_heads:
for param in target_q_head.parameters():
param.data.copy_(torch.zeros_like(param.data))
heads.sync_target_q_heads()
for target_q_head in heads.target_q_heads:
for param in target_q_head.parameters():
assert torch.allclose(param.data, alpha * torch.ones_like(param.data), atol=1e-06)
@given(
st.integers(1, 32),
st.integers(1, 32),
st.integers(1, 32),
st.integers(1, 32),
st.integers(1, 32),
st.booleans(),
)
def test_ilql_loss_doesnt_crash(batch_size, seq_len, num_action_idxs, hidden_size, vocab_size, two_qs):
ilql_config: ILQLConfig = default_ilql_config().method
ilql_config.two_qs = two_qs
num_state_idxs = num_action_idxs + 1
heads = ILQLHeads(hidden_size, vocab_size, two_qs, alpha=1.0, dtype=torch.float32)
hidden_states = torch.randn(batch_size, seq_len, hidden_size)
states_ixs = torch.randint(0, seq_len, (batch_size, num_state_idxs))
actions_ixs = torch.randint(0, seq_len, (batch_size, num_action_idxs))
qs, target_qs, vs = heads(hidden_states, states_ixs, actions_ixs)
logits = torch.randn(batch_size, seq_len, vocab_size)
labels = ILQLBatch(
input_ids=torch.randint(0, vocab_size, (batch_size, seq_len + 1)),
attention_mask=torch.ones(batch_size, seq_len, dtype=torch.bool),
rewards=torch.randn(batch_size, num_action_idxs),
states_ixs=states_ixs,
actions_ixs=actions_ixs,
dones=torch.randint(0, 2, (batch_size, num_state_idxs), dtype=torch.bool),
)
loss_input = logits, (qs, target_qs, vs)
loss, stats = ilql_config.loss(loss_input, labels)
@lru_cache
def cached_tokenizer():
return transformers.AutoTokenizer.from_pretrained("gpt2")
@given(
st.lists(st.tuples(st.text(min_size=1), st.floats(0.0, 1.0)), min_size=1),
st.integers(1, 32),
st.booleans(),
)
@settings(deadline=None)
def test_ilql_loss_make_experience_single_turn(samples_rewards, hidden_size, two_qs):
samples, rewards = zip(*samples_rewards)
batch_size = len(samples)
rollouts = make_experience(samples, rewards, tokenizer=cached_tokenizer(), verbose=False)
ilql_config: ILQLConfig = default_ilql_config().method
loader = rollouts.create_loader(batch_size)
ilql_batch = next(iter(loader))
seq_len = ilql_batch.input_ids.shape[1]
heads = ILQLHeads(hidden_size, 50257, two_qs, alpha=1.0, dtype=torch.float32)
hidden_states = torch.randn(batch_size, seq_len, hidden_size)
qs, target_qs, vs = heads(hidden_states, states_ixs=ilql_batch.states_ixs, actions_ixs=ilql_batch.actions_ixs)
logits = torch.randn(batch_size, seq_len, 50257)
loss, stats = ilql_config.loss((logits, (qs, target_qs, vs)), ilql_batch)
|