Spaces:
Runtime error
Runtime error
File size: 21,680 Bytes
fa6856c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
import copy
import gc
import os
import sys
import tempfile
import unittest
from typing import Optional
import numpy as np
import torch
import transformers
from peft import get_peft_config, get_peft_model
from peft.utils.config import PeftType, TaskType
from transformers import AutoConfig, AutoModelForCausalLM
from trlx.data.configs import TokenizerConfig
from trlx.data.default_configs import (
ModelConfig,
default_ilql_config,
default_ppo_config,
default_sft_config,
)
from trlx.models.modeling_ilql import (
AutoModelForCausalLMWithILQLHeads,
AutoModelForSeq2SeqLMWithILQLHeads,
)
from trlx.models.modeling_ppo import (
AutoModelForCausalLMWithHydraValueHead,
AutoModelForCausalLMWithValueHead,
AutoModelForSeq2SeqLMWithHydraValueHead,
)
from trlx.trainer.accelerate_ilql_trainer import AccelerateILQLTrainer
from trlx.trainer.accelerate_ppo_trainer import AcceleratePPOTrainer
from trlx.trainer.accelerate_sft_trainer import AccelerateSFTTrainer
PPO = "ppo"
ILQL = "ilql"
SFT = "sft"
TRAINING_TYPES = [PPO, ILQL, SFT]
CAUSAL = "causal"
SEQ2SEQ = "seq2seq"
MODEL_TASK_TYPE = {
"gpt2": CAUSAL,
"google/t5-efficient-tiny": SEQ2SEQ,
# "EleutherAI/pythia-160m": CAUSAL,
# "facebook/opt-125m": CAUSAL,
}
MODELS_TO_TEST = list(MODEL_TASK_TYPE.keys())
PEFT_CONFIGS_TO_TEST = [PeftType.LORA, PeftType.PROMPT_TUNING, PeftType.PREFIX_TUNING]
ALL_TEST_COMBINATIONS = [
[training_type, model_path, peft_type]
for training_type in TRAINING_TYPES
for model_path in MODELS_TO_TEST
for peft_type in PEFT_CONFIGS_TO_TEST
if [training_type, MODEL_TASK_TYPE[model_path]] != [SFT, SEQ2SEQ] # Seq2Seq SFT not implemented
and (MODEL_TASK_TYPE[model_path] != SEQ2SEQ or peft_type == PeftType.LORA)
# Skip some tests due to implementation problems of peft 0.3.0 with Seq2Seq
]
class TestPeft(unittest.TestCase):
def setUp(self):
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
def tearDown(self):
gc.collect() # Try to free up memory
def _create_model(
self,
training_type: str,
model_path: str,
task_type: str,
peft_type: Optional[str],
create_trainer: bool = False,
):
self.peft_config = self._get_peft_config(peft_type, task_type) if peft_type else None
if create_trainer:
self.trainer = self._get_trainer(training_type, model_path, task_type, self.peft_config)
self.model = self.trainer.model.to("cpu")
else:
# Should be a bit faster to execute than creating a trainer.
if training_type == SFT:
self.model = AutoModelForCausalLM.from_pretrained(model_path)
if self.peft_config:
self.model = get_peft_model(self.model, self.peft_config)
else:
self.model = self._get_auto_model_type(training_type, task_type).from_pretrained(
model_path,
peft_config=self.peft_config,
)
self._create_inputs(model_path, task_type)
def _create_inputs(self, tokenizer_path, task_type):
self.tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_path)
if task_type == CAUSAL:
self.inputs = self.tokenizer(
"Once upon a time there was a happy goose named Louis. He liked to eat bananas and",
return_tensors="pt",
)
elif task_type == SEQ2SEQ:
self.encoder_text = "Translate this text to French: Hello, my dog is cute"
self.decoder_text = "Bonjour, mon chien est mignon"
encoder_inputs = self.tokenizer(self.encoder_text, return_tensors="pt")
decoder_inputs = self.tokenizer(self.decoder_text, return_tensors="pt")
self.inputs = {
**encoder_inputs,
"decoder_input_ids": decoder_inputs.input_ids,
"decoder_attention_mask": decoder_inputs.attention_mask,
}
else:
# Classification tasks not implemented
raise NotImplementedError
def _get_trainer(self, training_type, model_path: str, task_type: str, peft_config, tokenizer_path: str = None):
if training_type == PPO:
config = default_ppo_config()
trainer_type = AcceleratePPOTrainer
elif training_type == ILQL:
config = default_ilql_config()
trainer_type = AccelerateILQLTrainer
elif training_type == SFT:
config = default_sft_config()
trainer_type = AccelerateSFTTrainer
else:
raise ValueError(f"Training type {training_type} not recognized.")
config.tokenizer = TokenizerConfig(tokenizer_path=tokenizer_path if tokenizer_path else model_path)
config.model = ModelConfig(model_path=model_path, peft_config=peft_config, model_arch_type=task_type)
config.train.tracker = None
return trainer_type(config)
def _get_auto_model_type(self, training_type, task_type):
if training_type == PPO:
if task_type == CAUSAL:
return AutoModelForCausalLMWithHydraValueHead
elif task_type == SEQ2SEQ:
return AutoModelForSeq2SeqLMWithHydraValueHead
elif training_type == ILQL:
if task_type == CAUSAL:
return AutoModelForCausalLMWithILQLHeads
elif task_type == SEQ2SEQ:
return AutoModelForSeq2SeqLMWithILQLHeads
elif training_type == SFT and task_type == CAUSAL:
return AutoModelForCausalLM
raise ValueError(f"Training type {training_type} for the task {task_type} not recognized.")
def _get_peft_config(self, peft_type: str, task_type: str):
assert task_type in [CAUSAL, SEQ2SEQ]
task_type = TaskType.CAUSAL_LM if task_type == "causal" else TaskType.SEQ_2_SEQ_LM
if peft_type == PeftType.LORA:
return get_peft_config(
{
"peft_type": peft_type,
"task_type": task_type,
"r": 8,
"lora_alpha": 32,
"lora_dropout": 0.0,
}
)
elif peft_type == PeftType.PREFIX_TUNING:
return get_peft_config(
{
"peft_type": peft_type,
"task_type": task_type,
"num_virtual_tokens": 10,
}
)
elif peft_type == PeftType.PROMPT_TUNING:
return get_peft_config(
{
"peft_type": peft_type,
"task_type": task_type,
"prompt_tuning_init": "RANDOM",
"num_virtual_tokens": 10,
}
)
else:
raise NotImplementedError
def _backprop(self, model):
output = model(**self.inputs, return_dict=True)
# Just apply an arbitrary loss to cause whatever change in the model's parameters.
# This loss doesn't make sense, but it causes a gradient, so it's fine.
loss = torch.nn.functional.binary_cross_entropy_with_logits(
output.logits[0][-1][:1],
torch.tensor([0.53]),
)
if hasattr(output, "value"):
loss += torch.nn.functional.binary_cross_entropy_with_logits(
output.value.squeeze()[-1:],
torch.tensor([0.53]),
)
loss.backward()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
optimizer.step()
return model
def _check_that_models_are_equivalent(self, model1, model2, training_type, test_hydra=False):
self.assertTrue(
torch.equal(model1(**self.inputs, return_dict=True).logits, model2(**self.inputs, return_dict=True).logits)
)
state_dict1 = model1.state_dict()
state_dict2 = model2.state_dict()
self.assertEqual(state_dict1.keys(), state_dict2.keys())
for name in state_dict1.keys():
self.assertTrue(torch.equal(state_dict1[name], state_dict2[name]))
if training_type != SFT:
self.assertTrue(
torch.equal(
model1(**self.inputs, return_dict=True).value,
model2(**self.inputs, return_dict=True).value,
)
)
if training_type == PPO and test_hydra:
self.assertTrue(
torch.equal(
model1.forward_hydra(**self.inputs, return_dict=True).logits,
model2.forward_hydra(**self.inputs, return_dict=True).logits,
)
)
def test_save_and_load(self):
for training_type in [PPO, ILQL]:
for model_path in MODELS_TO_TEST:
peft_type = PeftType.LORA
task_type = MODEL_TASK_TYPE[model_path]
self._create_model(training_type, model_path, task_type, peft_type)
self._backprop(self.model)
with tempfile.TemporaryDirectory() as tmp_dir:
self.model.save_pretrained(tmp_dir)
self.assertTrue(os.path.isfile(f"{tmp_dir}/adapter_model.bin"))
self.assertTrue(os.path.isfile(f"{tmp_dir}/adapter_config.json"))
self.assertTrue(os.path.isfile(f"{tmp_dir}/pytorch_model.bin"))
# Check that it didn't save the whole model (which weights around 500MB)
# pytorch_model.bin should only contain the other trained parts like the value heads.
# ILQL heads are very big though (around 1.1GB for gpt2).
self.assertLess(os.path.getsize(f"{tmp_dir}/pytorch_model.bin"), 1.3e9 if ILQL else 1e7)
auto_model_type = self._get_auto_model_type(training_type, task_type)
loaded_model = auto_model_type.from_pretrained(tmp_dir)
self._check_that_models_are_equivalent(loaded_model, self.model, training_type, True)
def test_from_config(self):
"""Check that from_config will add a peft adapter if given the argument peft_config"""
for training_type in TRAINING_TYPES:
peft_config = self._get_peft_config(PeftType.LORA, CAUSAL)
gpt2_config = AutoConfig.from_pretrained("gpt2")
trainer = self._get_trainer(training_type, gpt2_config, CAUSAL, peft_config, tokenizer_path="gpt2")
state_dict = trainer.model.state_dict()
self.assertTrue(any(["lora" in layer_name for layer_name in state_dict.keys()]))
def test_save_and_load_without_peft(self):
"""Similar to test_save_load, but with peft not installed. Should not raise any error."""
with unittest.mock.patch.dict(sys.modules, {"peft": None}):
for training_type in [PPO, ILQL]:
for model_path in MODELS_TO_TEST:
task_type = MODEL_TASK_TYPE[model_path]
self._create_model(training_type, model_path, task_type, peft_type=None)
self._backprop(self.model)
with tempfile.TemporaryDirectory() as tmp_dir:
self.model.save_pretrained(tmp_dir)
auto_model_type = self._get_auto_model_type(training_type, task_type)
loaded_model = auto_model_type.from_pretrained(tmp_dir)
self._check_that_models_are_equivalent(loaded_model, self.model, training_type)
def test_backpropagation_and_disabling(self):
for training_type, model_path, peft_type in ALL_TEST_COMBINATIONS:
task_type = MODEL_TASK_TYPE[model_path]
self._create_model(training_type, model_path, task_type, peft_type, create_trainer=True)
old_logits = self.model(**self.inputs, return_dict=True).logits
initial_model_state_dict = copy.deepcopy(self.model.state_dict())
self._backprop(self.model)
self._backprop(self.model)
new_logits = self.model(**self.inputs, return_dict=True).logits
new_model_state_dict = self.model.state_dict()
# Check that the backpropagation affected the predictions
self.assertFalse(torch.equal(old_logits, new_logits))
# Check that only the peft adapter layers are modified by the backpropagation
self.assertEqual(initial_model_state_dict.keys(), new_model_state_dict.keys())
for name in initial_model_state_dict.keys():
parameters_equal = torch.equal(initial_model_state_dict[name], new_model_state_dict[name])
if "lora" in name or "prompt" in name or "v_head" in name:
self.assertFalse(parameters_equal)
else:
self.assertTrue(parameters_equal)
# Check Lora enabling and disabling
if "LORA" in peft_type:
# If disabling the Lora adapter restores the original logits,
# this shows that the backpropagation only affected the Lora adapter
self.lora_model = self.model.base_model if training_type != SFT else self.model
self.lora_model.disable_adapter_layers()
new_logits = self.model(**self.inputs, return_dict=True).logits
self.assertTrue(torch.equal(old_logits, new_logits))
# Re-enabling the Lora adapter should make the 2 models different again
self.lora_model.enable_adapter_layers()
new_logits = self.model(**self.inputs, return_dict=True).logits
self.assertFalse(torch.equal(old_logits, new_logits))
def test_forward_hydra(self):
"""Test that PPO hydra heads work and give similar logits to the model without any fine-tuning."""
for model_path in MODELS_TO_TEST:
for peft_type in PEFT_CONFIGS_TO_TEST:
task_type = MODEL_TASK_TYPE[model_path]
if task_type == SEQ2SEQ and peft_type != PeftType.LORA:
continue # TODO: pass some tests due to some bugs in peft 0.3.0 with Seq2Seq
self._create_model(PPO, model_path, task_type, peft_type)
logits_without_peft = self.model.base_model.base_model(**self.inputs, return_dict=True).logits
logits_before_backpropagation = self.model(**self.inputs, return_dict=True).logits
self._backprop(self.model)
# forward_hydra should return the same logits as the original model
new_logits_from_hydra = self.model.forward_hydra(**self.inputs, return_dict=True).logits
self.assertTrue(torch.equal(logits_without_peft, new_logits_from_hydra))
if "LORA" in peft_type:
# True because the Lora adapter initially does not modify the output
self.assertTrue(torch.equal(logits_before_backpropagation, new_logits_from_hydra))
else:
# False because the initial prompt before backpropagation
# was used to calculate logits_before_backpropagation, but not for new_logits_from_hydra.
self.assertFalse(torch.equal(logits_before_backpropagation, new_logits_from_hydra))
def test_generate(self):
"""
Check that generate works, and that it's deterministic when the temperature is very low.
"""
temperature = 0.0
for training_type, model_path, peft_type in ALL_TEST_COMBINATIONS:
task_type = MODEL_TASK_TYPE[model_path]
self._create_model(training_type, model_path, task_type, peft_type)
self._backprop(self.model)
with torch.no_grad():
output1 = self.model.generate(
**self.inputs,
temperature=temperature,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
)
output2 = self.model.generate(
**self.inputs,
temperature=temperature,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
)
self.assertTrue(torch.equal(output1, output2))
def test_peft_not_installed_error(self):
"""If the argument peft_config is used but peft is not installed, expect a ModuleNotFoundError"""
with unittest.mock.patch.dict(sys.modules, {"peft": None}):
peft_config = {"peft_type": "LORA"}
with self.assertRaises(ModuleNotFoundError):
self._get_trainer(PPO, "gpt2", CAUSAL, peft_config)
with self.assertRaises(ModuleNotFoundError):
AutoModelForCausalLMWithHydraValueHead.from_pretrained("gpt2", peft_config=peft_config)
def test_lora_modules_to_save(self):
"""
Test the special Lora config option 'modules_to_save'.
It allows also train some non-lora modules, and its implementation is a bit tricky.
"""
for training_type in [PPO, ILQL]:
trainable_layer_name = "base_model.model.transformer.h.3.mlp"
peft_config = {
"peft_type": PeftType.LORA,
"task_type": CAUSAL,
"r": 8,
"lora_alpha": 32,
"lora_dropout": 0.0,
"modules_to_save": [trainable_layer_name],
}
model = self._get_auto_model_type(training_type, CAUSAL).from_pretrained("gpt2", peft_config=peft_config)
initial_state_dict = copy.deepcopy(model.state_dict())
self._create_inputs("gpt2", CAUSAL)
# initial_logits = model(**self.inputs, return_dict=True).logits
self._backprop(model)
self._backprop(model)
new_state_dict = model.state_dict()
self.assertEqual(initial_state_dict.keys(), new_state_dict.keys())
for name in initial_state_dict.keys():
parameters_equal = torch.equal(initial_state_dict[name], new_state_dict[name])
if trainable_layer_name + ".modules_to_save" in name or "lora" in name or "v_head" in name:
self.assertFalse(parameters_equal)
else:
self.assertTrue(parameters_equal)
# TODO: deactivated until the issue (https://github.com/huggingface/peft/issues/493) is fixed
# if training_type == PPO:
# forward_hydra_logits = model.forward_hydra(**self.inputs, return_dict=True).logits
# self.assertTrue(torch.equal(initial_logits, forward_hydra_logits))
trained_model_logits = model(**self.inputs, return_dict=True).logits
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
loaded_model = self._get_auto_model_type(training_type, CAUSAL).from_pretrained(tmp_dir)
loaded_model_logits = loaded_model(**self.inputs, return_dict=True).logits
self.assertTrue(torch.equal(trained_model_logits, loaded_model_logits))
# @unittest.skipUnless(
# importlib.util.find_spec("bitsandbytes") and torch.cuda.is_available(),
# "bitsandbytes and GPU needed to execute test_8bits",
# )
@unittest.skip("`8-bit` model loading support is not yet fully implemented")
def test_8bits(self):
"""Test the behaviour of from_pretrained with 8 bits models"""
from bitsandbytes.nn import Linear8bitLt
# gpt2 uses Conv1D instead of Linear, so use pythia-160m instead.
model_id = "EleutherAI/pythia-160m"
peft_config = {
"peft_type": PeftType.LORA,
"task_type": TaskType.CAUSAL_LM,
"lora_dropout": 0.0,
"lora_alpha": 32,
}
reference_model = AutoModelForCausalLMWithValueHead.from_pretrained(
model_id,
peft_config=peft_config,
)
initial_nb_trainable_params = sum(p.numel() for p in reference_model.parameters() if p.requires_grad)
model_8bit = AutoModelForCausalLMWithValueHead.from_pretrained(
model_id,
peft_config=peft_config,
load_in_8bit=True,
peft_int8_kwargs={"use_gradient_checkpointing": True},
device_map="auto",
)
new_nb_trainable_params = sum(p.numel() for p in model_8bit.parameters() if p.requires_grad)
self.assertEqual(new_nb_trainable_params, initial_nb_trainable_params)
self.assertIsInstance(reference_model.base_model.model.gpt_neox.layers[0].mlp.dense_h_to_4h, torch.nn.Linear)
self.assertIsInstance(model_8bit.base_model.model.gpt_neox.layers[0].mlp.dense_h_to_4h, Linear8bitLt)
base_model = AutoModelForCausalLM.from_pretrained(model_id, load_in_8bit=True, device_map="auto")
model_8bit = AutoModelForCausalLMWithValueHead.from_pretrained(
base_model,
peft_config=peft_config,
load_in_8bit=True,
peft_int8_kwargs={"use_gradient_checkpointing": False},
device_map="auto",
)
new_nb_trainable_params = sum(p.numel() for p in model_8bit.parameters() if p.requires_grad)
self.assertEqual(new_nb_trainable_params, initial_nb_trainable_params)
self.assertIsInstance(model_8bit.base_model.model.gpt_neox.layers[0].mlp.dense_h_to_4h, Linear8bitLt)
|