Spaces:
Sleeping
Sleeping
File size: 2,053 Bytes
ba73aa3 001ccce ba73aa3 001ccce ba73aa3 47f1329 001ccce 47f1329 001ccce ed5c215 001ccce 47f1329 001ccce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import os
import subprocess
import gradio as gr
def list_bin_files():
# Get the current directory
current_directory = os.getcwd()
# List all files in the current directory
all_files = os.listdir(current_directory)
# Filter files with the ".bin" extension
bin_files = [file for file in all_files if file.endswith(".bin")]
return bin_files
# Call the function to get the list of ".bin" files
model_list = list_bin_files()
try:
subprocess.run(["make", "runfast"], check=True, shell=True)
print("Model compilation successful.")
except subprocess.CalledProcessError as e:
print("Error:", e)
print(e.stderr)
def chatbot(prompt, temperature, topt, maxtoken, model):
command = ["./run", model, "-t", str(temperature), "-p", str(topt), "-n", str(maxtoken), "-i", f"{prompt}"]
try:
result = subprocess.run(command, capture_output=True, text=True, check=True, shell=False)
response = result.stdout
except subprocess.CalledProcessError as e:
response = "Error occurred while processing the request."
return response
with gr.Blocks() as demo:
gr.Markdown("HF Spaces for Product Review Writer")
with gr.Row():
with gr.Column():
inp = gr.Textbox(placeholder="Type the title of the product Review")
with gr.Row():
with gr.Column():
temperature_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.8, label="Temperature")
topt_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, label="Topt")
maxtoken_slider = gr.Slider(minimum=64, maximum=1024, value=256, label="Max Tokens")
model_pick = gr.Dropdown(model_list, label="Model", info="Model")
out = gr.Textbox()
btn = gr.Button("Run")
gr.Examples(examples=[["best sci-fi book ever"], ["great laptop for the price"]], inputs=[inp])
btn.click(fn=chatbot, inputs=[inp, temperature_slider, topt_slider, maxtoken_slider, model_pick], outputs=out)
demo.launch()
|