Spaces:
Sleeping
Sleeping
""" | |
This script has functions and utilties for model export. | |
Basically, we have a bunch of versions of the model, and we | |
want to export them to .bin files to be read from and inferenced in C. | |
Among the "input" versions of PyTorch files/models: | |
- Official Llama 2 weights released by Meta | |
- Huggingface weights available on the hub | |
- llama2.c (this repo) trained models | |
Among the "output" versions of .bin files: | |
- v0: Legacy files of the original llama2.c repo (will eventually be DEPRECATED) | |
- v1-vN: Improved .bin files with a proper header, cache alignment, etc. | |
This script aspires to provide all of these conversions. | |
""" | |
import os | |
import gzip | |
import shutil | |
import struct | |
import argparse | |
import json | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from torch import nn | |
from model import ModelArgs, Transformer | |
# ----------------------------------------------------------------------------- | |
# common utilities | |
def serialize_fp32(file, tensor): | |
""" writes one fp32 tensor to file that is open in wb mode """ | |
d = tensor.detach().cpu().view(-1).to(torch.float32).numpy() | |
b = struct.pack(f'{len(d)}f', *d) | |
file.write(b) | |
def serialize_int8(file, tensor): | |
""" writes one int8 tensor to file that is open in wb mode """ | |
d = tensor.detach().cpu().view(-1).numpy().astype(np.int8) | |
b = struct.pack(f'{len(d)}b', *d) | |
file.write(b) | |
def quantize_q80(w, group_size): | |
""" | |
takes a tensor and returns the Q8_0 quantized version | |
i.e. symmetric quantization into int8, range [-127,127] | |
""" | |
assert w.numel() % group_size == 0 | |
ori_shape = w.shape | |
w = w.float() # convert to float32 | |
w = w.reshape(-1, group_size) | |
# find the max in each group | |
wmax = torch.abs(w).max(dim=1).values | |
# calculate the scaling factor such that float = quant * scale | |
scale = wmax / 127.0 | |
# scale into range [-127, 127] | |
quant = w / scale[:,None] | |
# round to nearest integer | |
int8val = torch.round(quant).to(torch.int8) | |
# dequantize by rescaling | |
fp32val = (int8val.float() * scale[:,None]).view(-1) | |
fp32valr = fp32val.reshape(-1, group_size) | |
# calculate the max error in each group | |
err = torch.abs(fp32valr - w).max(dim=1).values | |
# find the max error across all groups | |
maxerr = err.max().item() | |
return int8val, scale, maxerr | |
# ----------------------------------------------------------------------------- | |
# legacy | |
def legacy_export(model, filepath): | |
""" Original export of llama2.c bin files, i.e. version v0 """ | |
out_file = open(filepath, 'wb') | |
# first write out the header | |
hidden_dim = model.layers[0].feed_forward.w1.weight.shape[0] | |
p = model.params | |
shared_classifier = torch.equal(model.tok_embeddings.weight, model.output.weight) | |
# legacy format uses negative/positive vocab size as a shared classifier flag | |
if not shared_classifier: | |
p.vocab_size = -p.vocab_size | |
n_kv_heads = p.n_heads if p.n_kv_heads is None else p.n_kv_heads | |
header = struct.pack('iiiiiii', p.dim, hidden_dim, p.n_layers, p.n_heads, | |
n_kv_heads, p.vocab_size, p.max_seq_len) | |
out_file.write(header) | |
# next write out the embedding weights | |
serialize_fp32(out_file, model.tok_embeddings.weight) | |
# now all the layers | |
# attention weights | |
for layer in model.layers: | |
serialize_fp32(out_file, layer.attention_norm.weight) | |
for layer in model.layers: | |
serialize_fp32(out_file, layer.attention.wq.weight) | |
for layer in model.layers: | |
serialize_fp32(out_file, layer.attention.wk.weight) | |
for layer in model.layers: | |
serialize_fp32(out_file, layer.attention.wv.weight) | |
for layer in model.layers: | |
serialize_fp32(out_file, layer.attention.wo.weight) | |
# ffn weights | |
for layer in model.layers: | |
serialize_fp32(out_file, layer.ffn_norm.weight) | |
for layer in model.layers: | |
serialize_fp32(out_file, layer.feed_forward.w1.weight) | |
for layer in model.layers: | |
serialize_fp32(out_file, layer.feed_forward.w2.weight) | |
for layer in model.layers: | |
serialize_fp32(out_file, layer.feed_forward.w3.weight) | |
# final rmsnorm | |
serialize_fp32(out_file, model.norm.weight) | |
# freqs_cis | |
serialize_fp32(out_file, model.freqs_cos[:p.max_seq_len]) | |
serialize_fp32(out_file, model.freqs_sin[:p.max_seq_len]) | |
# final classifier weights | |
if not shared_classifier: | |
serialize_fp32(out_file, model.output.weight) | |
# write to binary file | |
out_file.close() | |
print(f"wrote {filepath}") | |
# ----------------------------------------------------------------------------- | |
# new version | |
def version1_export(model, filepath): | |
""" | |
Export the model weights in full float32 .bin file to be read from C. | |
This is same as legacy_export, but with a proper header. | |
""" | |
version = 1 | |
out_file = open(filepath, 'wb') | |
# first write out the header. the header will be 256 bytes | |
# 1) write magic, which will be uint32 of "ak42" in ASCII | |
out_file.write(struct.pack('I', 0x616b3432)) | |
# 2) write version, which will be int | |
out_file.write(struct.pack('i', version)) | |
# 3) write the params, which will be 7 ints | |
p = model.params | |
hidden_dim = model.layers[0].feed_forward.w1.weight.shape[0] | |
n_kv_heads = p.n_heads if p.n_kv_heads is None else p.n_kv_heads | |
header = struct.pack('iiiiiii', p.dim, hidden_dim, p.n_layers, p.n_heads, | |
n_kv_heads, p.vocab_size, p.max_seq_len) | |
out_file.write(header) | |
# 4) write some other flags | |
shared_classifier = torch.equal(model.tok_embeddings.weight, model.output.weight) | |
out_file.write(struct.pack('B', int(shared_classifier))) | |
pad = 256 - out_file.tell() # pad rest with zeros; tell returns current pos | |
assert pad >= 0 | |
out_file.write(b'\0' * pad) | |
# now let's write out all the params | |
weights = [ | |
*[layer.attention_norm.weight for layer in model.layers], | |
*[layer.ffn_norm.weight for layer in model.layers], | |
model.norm.weight, | |
model.tok_embeddings.weight, | |
*[layer.attention.wq.weight for layer in model.layers], | |
*[layer.attention.wk.weight for layer in model.layers], | |
*[layer.attention.wv.weight for layer in model.layers], | |
*[layer.attention.wo.weight for layer in model.layers], | |
*[layer.feed_forward.w1.weight for layer in model.layers], | |
*[layer.feed_forward.w2.weight for layer in model.layers], | |
*[layer.feed_forward.w3.weight for layer in model.layers], | |
] | |
if not shared_classifier: | |
weights.append(model.output.weight) | |
for w in weights: | |
serialize_fp32(out_file, w) | |
# write to binary file | |
out_file.close() | |
print(f"wrote {filepath}") | |
def version2_export(model, filepath, group_size=64): | |
""" | |
Export the model weights in Q8_0 into .bin file to be read from C. | |
That is: | |
- quantize all weights to symmetric int8, in range [-127, 127] | |
- all other tensors (the rmsnorm params) are kept and exported in fp32 | |
- quantization is done in groups of group_size to reduce the effects of any outliers | |
""" | |
version = 2 | |
# let's first do some validation for this export type | |
while model.params.dim % group_size != 0: | |
group_size //= 2 | |
print(f"BACKOFF: reducing group size to {group_size} to fit hidden_dim") | |
weights = [ | |
model.tok_embeddings.weight, | |
*[layer.attention.wq.weight for layer in model.layers], | |
*[layer.attention.wk.weight for layer in model.layers], | |
*[layer.attention.wv.weight for layer in model.layers], | |
*[layer.attention.wo.weight for layer in model.layers], | |
*[layer.feed_forward.w1.weight for layer in model.layers], | |
*[layer.feed_forward.w2.weight for layer in model.layers], | |
*[layer.feed_forward.w3.weight for layer in model.layers], | |
] | |
shared_classifier = torch.equal(model.tok_embeddings.weight, model.output.weight) | |
if not shared_classifier: | |
weights.append(model.output.weight) | |
for w in weights: | |
assert w.numel() % group_size == 0, f"weight {i} has numel {w.numel()}, not a multiple of group_size {group_size}" | |
# write | |
out_file = open(filepath, 'wb') | |
# first write out the header. the header will be 256 bytes | |
# 1) write magic, which will be uint32 of "ak42" in ASCII | |
out_file.write(struct.pack('I', 0x616b3432)) | |
# 2) write version, which will be int | |
out_file.write(struct.pack('i', version)) | |
# 3) write the params, which will be 7 ints | |
p = model.params | |
hidden_dim = model.layers[0].feed_forward.w1.weight.shape[0] | |
n_kv_heads = p.n_heads if p.n_kv_heads is None else p.n_kv_heads | |
header = struct.pack('iiiiiii', p.dim, hidden_dim, p.n_layers, p.n_heads, | |
n_kv_heads, p.vocab_size, p.max_seq_len) | |
out_file.write(header) | |
# 4) write some other flags | |
out_file.write(struct.pack('B', int(shared_classifier))) | |
out_file.write(struct.pack('i', group_size)) # group size used for quantization | |
pad = 256 - out_file.tell() # pad rest with zeros; tell returns current pos | |
assert pad >= 0 | |
out_file.write(b'\0' * pad) | |
# now that the header is done, let's write out the model | |
# first let's write out all the params that we are keeping in fp32: the norms | |
for layer in model.layers: # attention norms | |
serialize_fp32(out_file, layer.attention_norm.weight) | |
for layer in model.layers: # MLP norms | |
serialize_fp32(out_file, layer.ffn_norm.weight) | |
serialize_fp32(out_file, model.norm.weight) # final pre-classifier norm | |
# now let's write out all the params that we are quantizing to Q8_0 | |
# note we skip classifier weights, which are shared with the embedding | |
ew = [] | |
for i, w in enumerate(weights): | |
# quantize this weight | |
q, s, err = quantize_q80(w, group_size) | |
# save the int8 weights to file | |
serialize_int8(out_file, q) # save the tensor in int8 | |
serialize_fp32(out_file, s) # save scale factors | |
# logging | |
ew.append((err, w.shape)) | |
print(f"{i+1}/{len(weights)} quantized {tuple(w.shape)} to Q8_0 with max error {err}") | |
# print the highest error across all weights, should be very small, e.g. O(~0.001) | |
ew.sort(reverse=True) | |
print(f"max quantization group error across all weights: {ew[0][0]}") | |
# write to binary file | |
out_file.close() | |
print(f"wrote {filepath}") | |
def hf_export(llama_model, filepath, group_size=64, dtype=torch.float32): | |
""" Generate the pytorch_model.bin state_dict and config.json for HuggingFace """ | |
try: | |
from transformers.models.llama.configuration_llama import LlamaConfig | |
except ImportError: | |
print("Error: transformers package is required to load huggingface models") | |
print("Please run `pip install transformers` to install it") | |
return None | |
# Generate LlamaModel state_dict | |
hf_state_dict = {} | |
# Sometimes we have repeated key values for the heads | |
dim = llama_model.params.dim | |
num_key_value_heads = llama_model.params.n_kv_heads | |
n_rep = llama_model.params.n_heads // num_key_value_heads | |
key_value_dim = dim // n_rep | |
# HuggingFace needs the weights permuted. | |
# See: https://github.com/huggingface/transformers/blob/b132c1703eb1c8bd9dfa4ad6a9be2bfd6ef819e9/src/transformers/models/llama/convert_llama_weights_to_hf.py#L122 | |
def permute_original(w, n_heads=llama_model.params.n_heads, dim1=dim, dim2=dim): | |
return w.view(dim1, dim2).reshape(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2) | |
# Transfer weights from llama model to the HF state dictionary format | |
hf_state_dict['model.embed_tokens.weight'] = llama_model.tok_embeddings.weight.clone().to(dtype) | |
hf_state_dict['model.norm.weight'] = llama_model.norm.weight.clone().to(dtype) | |
# Add each layer's weights to the HF state dictionary | |
for i, layer in enumerate(llama_model.layers): | |
layer_id = layer.layer_id | |
hf_state_dict[f'model.layers.{i}.input_layernorm.weight'] = llama_model.layers[layer_id].attention_norm.weight.clone().to(dtype) | |
hf_state_dict[f'model.layers.{i}.self_attn.q_proj.weight'] = permute_original(llama_model.layers[layer_id].attention.wq.weight.clone()).to(dtype) | |
hf_state_dict[f'model.layers.{i}.self_attn.k_proj.weight'] = permute_original(llama_model.layers[layer_id].attention.wk.weight.clone(), num_key_value_heads, key_value_dim, dim).to(dtype) | |
hf_state_dict[f'model.layers.{i}.self_attn.v_proj.weight'] = llama_model.layers[layer_id].attention.wv.weight.clone().to(dtype) | |
hf_state_dict[f'model.layers.{i}.self_attn.o_proj.weight'] = llama_model.layers[layer_id].attention.wo.weight.clone().to(dtype) | |
hf_state_dict[f'model.layers.{i}.post_attention_layernorm.weight'] = llama_model.layers[layer_id].ffn_norm.weight.clone().to(dtype) | |
hf_state_dict[f'model.layers.{i}.mlp.gate_proj.weight'] = llama_model.layers[layer_id].feed_forward.w1.weight.clone().to(dtype) | |
hf_state_dict[f'model.layers.{i}.mlp.down_proj.weight'] = llama_model.layers[layer_id].feed_forward.w2.weight.clone().to(dtype) | |
hf_state_dict[f'model.layers.{i}.mlp.up_proj.weight'] = llama_model.layers[layer_id].feed_forward.w3.weight.clone().to(dtype) | |
# llama2.c usually uses tied weights -> reference the embed_tokens.weights instead | |
hf_state_dict['lm_head.weight'] = hf_state_dict['model.embed_tokens.weight'] | |
# We check that the embeddings are tied, else use manual output weights | |
_embeddings_are_tied: bool = torch.equal(llama_model.tok_embeddings.weight, llama_model.output.weight) | |
if not _embeddings_are_tied: | |
hf_state_dict['lm_head.weight'] = llama_model.output.weight.clone().to(dtype) | |
# Generate LlamaConfig (seen in transformers.models.llama.configuration_llama) | |
# Extract necessary attributes from llama.c model | |
vocab_size = llama_model.params.vocab_size | |
hidden_size = llama_model.params.dim | |
intermediate_size = llama_model.layers[0].feed_forward.w1.weight.shape[0] | |
num_hidden_layers = llama_model.params.n_layers | |
num_attention_heads = llama_model.params.n_heads | |
num_key_value_heads = llama_model.params.n_kv_heads | |
max_position_embeddings = llama_model.params.max_seq_len | |
rms_norm_eps = llama_model.params.norm_eps | |
# TODO check values for: | |
# pretraining_tp, initializer_range, use_cache, | |
# rope_theta, and rope_scaling. | |
config = LlamaConfig( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
intermediate_size=intermediate_size, | |
num_hidden_layers=num_hidden_layers, | |
num_attention_heads=num_attention_heads, | |
num_key_value_heads=num_key_value_heads, | |
max_position_embeddings=max_position_embeddings, | |
rms_norm_eps=rms_norm_eps, | |
tie_word_embeddings=_embeddings_are_tied, | |
# Manual | |
architectures=["LlamaForCausalLM"], | |
hidden_act="silu", | |
) | |
# Save files in directory filepath | |
# First make the directory if it doesn't exist | |
os.makedirs(filepath, exist_ok=True) | |
# Save the state dictionary in .bin format, and config as .json | |
torch.save(hf_state_dict, os.path.join(filepath, "pytorch_model.bin")) | |
config.save_pretrained(filepath) | |
# ----------------------------------------------------------------------------- | |
# Load / import functions | |
def load_checkpoint(checkpoint): | |
# load the provided model checkpoint | |
checkpoint_dict = torch.load(checkpoint, map_location='cpu') | |
gptconf = ModelArgs(**checkpoint_dict['model_args']) | |
model = Transformer(gptconf) | |
state_dict = checkpoint_dict['model'] | |
unwanted_prefix = '_orig_mod.' | |
for k,v in list(state_dict.items()): | |
if k.startswith(unwanted_prefix): | |
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) | |
model.load_state_dict(state_dict, strict=False) | |
model.eval() | |
return model | |
def load_meta_model(model_path): | |
params_path = os.path.join(model_path, 'params.json') | |
with open(params_path) as f: | |
params = json.load(f) | |
print(params) | |
model_paths = sorted(list(Path(model_path).glob('consolidated.*.pth'))) | |
models = [torch.load(p, map_location='cpu') for p in model_paths] | |
def concat_weights(models): | |
state_dict = {} | |
for name in list(models[0]): | |
tensors = [model[name] for model in models] | |
if len(tensors) == 1 or len(tensors[0].shape) == 1: | |
state_dict[name] = tensors[0] | |
continue | |
is_axis_1 = ( | |
name.startswith('tok_embeddings.') | |
or name.endswith('.attention.wo.weight') | |
or name.endswith('.feed_forward.w2.weight') | |
) | |
axis = 1 if is_axis_1 else 0 | |
state_dict[name] = torch.cat(tensors, dim=axis) | |
for model in models: | |
del model[name] | |
return state_dict | |
state_dict = concat_weights(models) | |
del models | |
# set ModelArgs | |
config = ModelArgs() | |
config.dim = params["dim"] | |
config.n_layers = params["n_layers"] | |
config.n_heads = params["n_heads"] | |
config.n_kv_heads = params.get('n_kv_heads') or params['n_heads'] | |
config.multiple_of = params["multiple_of"] | |
config.norm_eps = params["norm_eps"] | |
config.vocab_size = state_dict['tok_embeddings.weight'].shape[0] | |
config.max_seq_len = 2048 | |
# create a new Transformer object and set weights | |
model = Transformer(config) | |
model.tok_embeddings.weight = nn.Parameter(state_dict['tok_embeddings.weight']) | |
model.norm.weight = nn.Parameter(state_dict['norm.weight']) | |
for layer in model.layers: | |
i = layer.layer_id | |
layer.attention_norm.weight = nn.Parameter(state_dict[f'layers.{i}.attention_norm.weight']) | |
layer.attention.wq.weight = nn.Parameter(state_dict[f'layers.{i}.attention.wq.weight']) | |
layer.attention.wk.weight = nn.Parameter(state_dict[f'layers.{i}.attention.wk.weight']) | |
layer.attention.wv.weight = nn.Parameter(state_dict[f'layers.{i}.attention.wv.weight']) | |
layer.attention.wo.weight = nn.Parameter(state_dict[f'layers.{i}.attention.wo.weight']) | |
layer.ffn_norm.weight = nn.Parameter(state_dict[f'layers.{i}.ffn_norm.weight']) | |
layer.feed_forward.w1.weight = nn.Parameter(state_dict[f'layers.{i}.feed_forward.w1.weight']) | |
layer.feed_forward.w2.weight = nn.Parameter(state_dict[f'layers.{i}.feed_forward.w2.weight']) | |
layer.feed_forward.w3.weight = nn.Parameter(state_dict[f'layers.{i}.feed_forward.w3.weight']) | |
# final classifier | |
model.output.weight = nn.Parameter(state_dict['output.weight']) | |
model.eval() | |
return model | |
def load_hf_model(model_path): | |
try: | |
from transformers import AutoModelForCausalLM | |
except ImportError: | |
print("Error: transformers package is required to load huggingface models") | |
print("Please run `pip install transformers` to install it") | |
return None | |
# load HF model | |
hf_model = AutoModelForCausalLM.from_pretrained(model_path) | |
hf_dict = hf_model.state_dict() | |
# convert LlamaConfig to ModelArgs | |
config = ModelArgs() | |
config.dim = hf_model.config.hidden_size | |
config.n_layers = hf_model.config.num_hidden_layers | |
config.n_heads = hf_model.config.num_attention_heads | |
config.n_kv_heads = hf_model.config.num_attention_heads | |
config.vocab_size = hf_model.config.vocab_size | |
config.hidden_dim = hf_model.config.intermediate_size | |
config.norm_eps = hf_model.config.rms_norm_eps | |
config.max_seq_len = hf_model.config.max_position_embeddings | |
# create a new Transformer object and set weights | |
model = Transformer(config) | |
model.tok_embeddings.weight = nn.Parameter(hf_dict['model.embed_tokens.weight']) | |
model.norm.weight = nn.Parameter(hf_dict['model.norm.weight']) | |
# huggingface permutes WQ and WK, this function reverses it | |
def permute_reverse(w, n_heads=config.n_heads, dim1=config.dim, dim2=config.dim): | |
return w.view(n_heads, 2, dim1 // n_heads // 2, dim2).transpose(1, 2).reshape(dim1, dim2) | |
for layer in model.layers: | |
i = layer.layer_id | |
layer.attention_norm.weight = nn.Parameter(hf_dict[f'model.layers.{i}.input_layernorm.weight']) | |
layer.attention.wq.weight = nn.Parameter(permute_reverse(hf_dict[f'model.layers.{i}.self_attn.q_proj.weight'])) | |
layer.attention.wk.weight = nn.Parameter(permute_reverse(hf_dict[f'model.layers.{i}.self_attn.k_proj.weight'])) | |
layer.attention.wv.weight = nn.Parameter(hf_dict[f'model.layers.{i}.self_attn.v_proj.weight']) | |
layer.attention.wo.weight = nn.Parameter(hf_dict[f'model.layers.{i}.self_attn.o_proj.weight']) | |
layer.ffn_norm.weight = nn.Parameter(hf_dict[f'model.layers.{i}.post_attention_layernorm.weight']) | |
layer.feed_forward.w1.weight = nn.Parameter(hf_dict[f'model.layers.{i}.mlp.gate_proj.weight']) | |
layer.feed_forward.w2.weight = nn.Parameter(hf_dict[f'model.layers.{i}.mlp.down_proj.weight']) | |
layer.feed_forward.w3.weight = nn.Parameter(hf_dict[f'model.layers.{i}.mlp.up_proj.weight']) | |
# final classifier | |
model.output.weight = nn.Parameter(hf_dict['lm_head.weight']) | |
model.eval() | |
return model | |
# ----------------------------------------------------------------------------- | |
# API entrypoint | |
def model_export(model, filepath, version, dtype=torch.float32): | |
""" | |
Versions docs: | |
v-1:huggingface export, i.e. intended for use outside of this repo, in HF | |
v0: legacy llama2.c float format, DEPRECATED | |
v1: float32 export | |
v2: int8 quantized Q8_0 export, similar to llama.cpp, in groups | |
# TODO: add dtype export support for other versions (?) | |
""" | |
if version == 0: | |
legacy_export(model, filepath) | |
elif version == 1: | |
version1_export(model, filepath) | |
elif version == 2: | |
version2_export(model, filepath) | |
elif version == -1: | |
hf_export(model, filepath, dtype) | |
else: | |
raise ValueError(f"unknown version {version}") | |
def torchscript_export(model, filepath, zero_params=False, gzip_output=False): | |
""" | |
(This was submitted via a PR earlier. Leaving it here, but "orphaned" for now) | |
Saves the model as a TorchScript. | |
The resulting file can be loaded in C++ code and then used for training or | |
inference with: | |
#include <torch/script.h> | |
torch::jit::Module module = torch::jit::load("model.pt") | |
Note that the serialized model includes the initial parameters and with the default | |
ModelArgs the file is 59M and gzips down to 55M. If you want to serialize/distribute | |
the model parameters separately you can zero out the parameters before saving it and | |
it will gzip down to 780K. | |
""" | |
# If requested zero params before saving the model. This is useful in | |
# conjunction with gzip_output. | |
if zero_params: | |
for p in model.parameters(): | |
p.detach().zero_() | |
torch.jit.save(torch.jit.script(model), filepath) | |
if gzip_output: | |
with open(filepath, "rb") as f_in: | |
with gzip.open(f"{filepath}.gz", "wb") as f_out: | |
shutil.copyfileobj(f_in, f_out) | |
os.unlink(filepath) | |
# ----------------------------------------------------------------------------- | |
# CLI entrypoint | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("filepath", type=str, help="the output filepath") | |
parser.add_argument("--version", default=0, type=int, help="the version to export with") | |
parser.add_argument("--dtype", type=str, help="dtype of the model (fp16, fp32)", default="fp32") | |
group = parser.add_mutually_exclusive_group(required=True) | |
group.add_argument("--checkpoint", type=str, help="model checkpoint, .pt file") | |
group.add_argument("--meta-llama", type=str, help="meta llama model path") | |
group.add_argument("--hf", type=str, help="huggingface model path") | |
args = parser.parse_args() | |
dtype = {"fp16": torch.float16, "fp32": torch.float32}[args.dtype] | |
if args.checkpoint: | |
model = load_checkpoint(args.checkpoint) | |
elif args.meta_llama: | |
model = load_meta_model(args.meta_llama) | |
elif args.hf: | |
model = load_hf_model(args.hf) | |
if model is None: | |
parser.error("Can't load input model!") | |
# export | |
model_export(model, args.filepath, args.version, args.dtype) | |