Spaces:
Runtime error
Runtime error
File size: 7,547 Bytes
4570d75 1066174 96849a6 1066174 780da15 1066174 96849a6 1066174 93b727e 1066174 96849a6 1066174 96849a6 1066174 780da15 1066174 780da15 1066174 780da15 1066174 62717d4 1066174 62717d4 1066174 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import gradio as gr
import argparse
from einops import rearrange
#from glide_text2im import dist_util, logger
from torchvision.utils import make_grid
from glide_text2im.script_util import (
model_and_diffusion_defaults,
create_model_and_diffusion,
args_to_dict,
add_dict_to_argparser,
)
from glide_text2im.image_datasets_sketch import get_tensor
from glide_text2im.train_util import TrainLoop
from glide_text2im.glide_util import sample
import torch
import os
import torch as th
import torchvision.utils as tvu
import torch.distributed as dist
from PIL import Image
import cv2
import numpy as np
from huggingface_hub import hf_hub_download
def run(image, mode, sample_c=1.3, num_samples=3, sample_step=100):
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
parser, parser_up = create_argparser()
args = parser.parse_args()
args_up = parser_up.parse_args()
#dist_util.setup_dist()
if mode == 'sketch':
args.mode = 'coco-edge'
args_up.mode = 'coco-edge'
args.model_path = hf_hub_download(repo_id="tfwang/PITI", filename="base.pt")
args.sr_model_path = hf_hub_download(repo_id="tfwang/PITI", filename="upsample.pt")
elif mode == 'mask':
args.mode = 'coco'
args_up.mode = 'coco'
args.model_path = hf_hub_download(repo_id="tfwang/PITI", filename="base_mask.pt")
args.sr_model_path = hf_hub_download(repo_id="tfwang/PITI", filename="upsample_mask.pt")
args.val_data_dir = image
args.sample_c = sample_c
args.num_samples = num_samples
options=args_to_dict(args, model_and_diffusion_defaults(0.).keys())
model, diffusion = create_model_and_diffusion(**options)
options_up=args_to_dict(args_up, model_and_diffusion_defaults(True).keys())
model_up, diffusion_up = create_model_and_diffusion(**options_up)
if args.model_path:
print('loading model')
model_ckpt = torch.load(args.model_path, map_location="cpu")
model.load_state_dict(
model_ckpt , strict=True )
if args.sr_model_path:
print('loading sr model')
model_ckpt2 = torch.load(args.sr_model_path, map_location="cpu")
model_up.load_state_dict(
model_ckpt2 , strict=True )
model.to(device)
model_up.to(device)
model.eval()
model_up.eval()
########### dataset
# logger.log("creating data loader...")
if args.mode == 'coco':
pil_image = image
label_pil = pil_image.convert("RGB").resize((256, 256), Image.NEAREST)
label_tensor = get_tensor()(label_pil)
data_dict = {"ref":label_tensor.unsqueeze(0).repeat(args.num_samples, 1, 1, 1)}
elif args.mode == 'coco-edge':
# pil_image = Image.open(image)
pil_image = image
label_pil = pil_image.convert("L").resize((256, 256), Image.NEAREST)
im_dist = cv2.distanceTransform(255-np.array(label_pil), cv2.DIST_L1, 3)
im_dist = np.clip((im_dist) , 0, 255).astype(np.uint8)
im_dist = Image.fromarray(im_dist).convert("RGB")
label_tensor = get_tensor()(im_dist)[:1]
data_dict = {"ref":label_tensor.unsqueeze(0).repeat(args.num_samples, 1, 1, 1)}
print("sampling...")
sampled_imgs = []
grid_imgs = []
img_id = 0
while (True):
if img_id >= args.num_samples:
break
model_kwargs = data_dict
with th.no_grad():
samples_lr =sample(
glide_model= model,
glide_options= options,
side_x= 64,
side_y= 64,
prompt=model_kwargs,
batch_size= args.num_samples,
guidance_scale=args.sample_c,
device=device,
prediction_respacing= str(sample_step),
upsample_enabled= False,
upsample_temp=0.997,
mode = args.mode,
)
samples_lr = samples_lr.clamp(-1, 1)
tmp = (127.5*(samples_lr + 1.0)).int()
model_kwargs['low_res'] = tmp/127.5 - 1.
samples_hr =sample(
glide_model= model_up,
glide_options= options_up,
side_x=256,
side_y=256,
prompt=model_kwargs,
batch_size=args.num_samples,
guidance_scale=1,
device=device,
prediction_respacing= "fast27",
upsample_enabled=True,
upsample_temp=0.997,
mode = args.mode,
)
samples_hr = samples_hr
for hr in samples_hr:
hr = 255. * rearrange((hr.cpu().numpy()+1.0)*0.5, 'c h w -> h w c')
sample_img = Image.fromarray(hr.astype(np.uint8))
sampled_imgs.append(sample_img)
img_id += 1
grid_imgs.append(samples_hr)
grid = torch.stack(grid_imgs, 0)
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
grid = make_grid(grid, nrow=2)
# to image
grid = 255. * rearrange((grid+1.0)*0.5, 'c h w -> h w c').cpu().numpy()
return Image.fromarray(grid.astype(np.uint8))
def create_argparser():
defaults = dict(
data_dir="",
val_data_dir="",
model_path="./base_edge.pt",
sr_model_path="./upsample_edge.pt",
encoder_path="",
schedule_sampler="uniform",
lr=1e-4,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=2,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=100,
save_interval=20000,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
sample_c=1.,
sample_respacing="100",
uncond_p=0.2,
num_samples=3,
finetune_decoder = False,
mode = '',
)
defaults_up = defaults
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
defaults_up.update(model_and_diffusion_defaults(True))
parser_up = argparse.ArgumentParser()
add_dict_to_argparser(parser_up, defaults_up)
return parser, parser_up
image = gr.outputs.Image(type="pil", label="Sampled results")
css = ".output-image{height: 528px !important} .output-carousel .output-image{height:272px !important} a{text-decoration: underline}"
iface = gr.Interface(fn=run, inputs=[
gr.inputs.Image(type="pil", label="Input Sketch" ) ,
# gr.Image(image_mode="L", source="canvas", type="pil", shape=(256,256), invert_colors=False, tool="editor"),
gr.inputs.Radio(label="Input Mode - The type of your input", choices=["mask", "sketch"],default="sketch"),
gr.inputs.Slider(label="sample_c - The strength of classifier-free guidance",default=1.4, minimum=1.0, maximum=2.0),
gr.inputs.Slider(label="Number of samples - How many samples you wish to generate", default=4, step=1, minimum=1, maximum=16),
gr.inputs.Slider(label="Number of Steps - How many steps you want to use", default=100, step=10, minimum=50, maximum=1000),
],
outputs=[image],
css=css,
title="Generate images from sketches with PITI",
description="<div>By uploading a sketch map or a semantic map and pressing submit, you can generate images based on your input.</div>")
iface.launch(enable_queue=True)
|