PITI-Synthesis / glide_text2im /script_util.py
tfwang's picture
add app file
bd366ed
import argparse
import inspect
from . import gaussian_diffusion as gd
from .respace import SpacedDiffusion, space_timesteps
from .text2im_model import (
SuperResText2ImModel,
Text2ImModel,
)
def model_and_diffusion_defaults(super_res=0):
"""
Defaults for image training.
"""
result= dict(
image_size=64,
num_channels=192,
num_res_blocks=3,
channel_mult="",
num_heads=1,
num_head_channels=64,
num_heads_upsample=-1,
attention_resolutions="32,16,8",
dropout=0.1,
text_ctx=128,
xf_width=512,
xf_layers=16,
xf_heads=8,
xf_final_ln=True,
xf_padding=True,
learn_sigma=True, ##
sigma_small=False, ##
diffusion_steps=1000,
noise_schedule="squaredcos_cap_v2",
timestep_respacing="",
use_kl=False, ##
predict_xstart=False,
rescale_timesteps=True,
rescale_learned_sigmas=True,
use_fp16=False, ##
use_scale_shift_norm=True,
resblock_updown=True,
cache_text_emb=False,
inpaint=False,
super_res=0,
mode = '',
)
if super_res:
result.update(
dict(
image_size=256,
num_res_blocks=2,
noise_schedule="linear",
super_res=super_res,
))
return result
def create_model_and_diffusion(
image_size=64,
num_channels=192,
num_res_blocks=3,
channel_mult="",
num_heads=1,
num_head_channels=64,
num_heads_upsample=-1,
attention_resolutions="32,16,8",
dropout=0.1,
text_ctx=128,
xf_width=512,
xf_layers=16,
xf_heads=8,
xf_final_ln=True,
xf_padding=True,
learn_sigma=False, ##
sigma_small=False, ##
diffusion_steps=1000,
noise_schedule="squaredcos_cap_v2",
timestep_respacing="",
use_kl=False, ##
predict_xstart=False,
rescale_timesteps=True,
rescale_learned_sigmas=True,
use_fp16=False, ##
use_scale_shift_norm=True,
resblock_updown=True,
cache_text_emb=False,
inpaint=False,
super_res=False,
mode = '',
):
model = create_model(
image_size,
num_channels,
num_res_blocks,
learn_sigma=learn_sigma,
channel_mult=channel_mult,
use_fp16=use_fp16,
attention_resolutions=attention_resolutions,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
dropout=dropout,
text_ctx=text_ctx,
xf_width=xf_width,
xf_layers=xf_layers,
xf_heads=xf_heads,
xf_final_ln=xf_final_ln,
xf_padding=xf_padding,
resblock_updown=resblock_updown,
cache_text_emb=cache_text_emb,
inpaint=inpaint,
super_res=super_res,
mode = mode
)
diffusion = create_gaussian_diffusion(
steps=diffusion_steps,
learn_sigma=learn_sigma,
sigma_small=sigma_small,
noise_schedule=noise_schedule,
use_kl=use_kl,
predict_xstart=predict_xstart,
rescale_timesteps=rescale_timesteps,
rescale_learned_sigmas=rescale_learned_sigmas,
timestep_respacing=timestep_respacing,
)
return model, diffusion
def create_model(
image_size,
num_channels,
num_res_blocks,
learn_sigma,
channel_mult,
use_fp16,
attention_resolutions,
num_heads,
num_head_channels,
num_heads_upsample,
use_scale_shift_norm,
dropout,
text_ctx,
xf_width,
xf_layers,
xf_heads,
xf_final_ln,
xf_padding,
resblock_updown,
cache_text_emb,
inpaint,
super_res,
mode,
):
if channel_mult == "":
if image_size == 256:
channel_mult = (1, 1, 2, 2, 4, 4)
elif image_size == 128:
channel_mult = (1, 1, 2, 3, 4)
elif image_size == 64:
channel_mult = (1, 2, 3, 4)
else:
raise ValueError(f"unsupported image size: {image_size}")
else:
channel_mult = tuple(int(ch_mult) for ch_mult in channel_mult.split(","))
assert 2 ** (len(channel_mult) + 2) == image_size
attention_ds = []
for res in attention_resolutions.split(","):
attention_ds.append(image_size // int(res))
if super_res:
model_cls = SuperResText2ImModel
else:
model_cls = Text2ImModel
n_class = 3
if mode == 'ade20k' or mode == 'coco':
n_class = 3
elif mode == 'depth-normal' :
n_class = 6
elif mode == 'coco-edge' or mode == 'flickr-edge':
n_class = 1
return model_cls(
text_ctx=text_ctx,
xf_width=xf_width,
xf_layers=xf_layers,
xf_heads=xf_heads,
xf_final_ln=xf_final_ln,
model_channels=num_channels,
out_channels=(3 if not learn_sigma else 6),
num_res_blocks=num_res_blocks,
attention_resolutions=tuple(attention_ds),
dropout=dropout,
channel_mult=channel_mult,
use_fp16=use_fp16,
num_heads=num_heads,
num_heads_upsample=num_heads_upsample,
num_head_channels=num_head_channels,
use_scale_shift_norm=use_scale_shift_norm,
resblock_updown=resblock_updown,
in_channels=3,
n_class = n_class,
image_size = image_size,
)
def create_gaussian_diffusion(
*,
steps=1000,
learn_sigma=False,
sigma_small=False,
noise_schedule="linear",
use_kl=False,
predict_xstart=False,
rescale_timesteps=False,
rescale_learned_sigmas=False,
timestep_respacing="",
):
betas = gd.get_named_beta_schedule(noise_schedule, steps)
if use_kl:
loss_type = gd.LossType.RESCALED_KL
elif rescale_learned_sigmas:
loss_type = gd.LossType.RESCALED_MSE
else:
loss_type = gd.LossType.MSE
if not timestep_respacing:
timestep_respacing = [steps]
return SpacedDiffusion(
use_timesteps=space_timesteps(steps, timestep_respacing),
betas=betas,
model_mean_type=(
gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
),
model_var_type=(
(
gd.ModelVarType.FIXED_LARGE
if not sigma_small
else gd.ModelVarType.FIXED_SMALL
)
if not learn_sigma
else gd.ModelVarType.LEARNED_RANGE
),
loss_type=loss_type,
rescale_timesteps=rescale_timesteps,
)
def add_dict_to_argparser(parser, default_dict):
for k, v in default_dict.items():
v_type = type(v)
if v is None:
v_type = str
elif isinstance(v, bool):
v_type = str2bool
parser.add_argument(f"--{k}", default=v, type=v_type)
def args_to_dict(args, keys=None):
if keys is None:
keys=vars(args)
return {k: getattr(args, k) for k in keys}
def str2bool(v):
"""
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
"""
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("boolean value expected")