Spaces:
Runtime error
Runtime error
File size: 8,380 Bytes
f645dbd 1a07c6d f645dbd 99e8a66 f645dbd 99e8a66 f645dbd 99e8a66 f645dbd 99e8a66 f645dbd d6b800d f645dbd 99e8a66 f645dbd 2867422 d6b800d f645dbd 99e8a66 f645dbd 99e8a66 f645dbd d6b800d f645dbd 99e8a66 f645dbd 99e8a66 f645dbd 99e8a66 f645dbd d6b800d f645dbd f1ed673 f645dbd d6b800d f645dbd 99e8a66 f645dbd 99e8a66 f645dbd b58f1e1 56c8b9c f645dbd 683c530 f645dbd 99e8a66 f645dbd f1ed673 f645dbd f1ed673 f645dbd 99e8a66 f645dbd 99e8a66 f645dbd b58f1e1 f645dbd 99e8a66 f645dbd bc6b593 f645dbd d6b800d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import tempfile
from argparse import Namespace
from pathlib import Path
import gradio as gr
import soundfile as sf
import torch
from matcha.cli import (
MATCHA_URLS,
VOCODER_URLS,
assert_model_downloaded,
get_device,
load_matcha,
load_vocoder,
process_text,
to_waveform,
)
from matcha.utils.utils import get_user_data_dir, plot_tensor
LOCATION = Path(get_user_data_dir())
args = Namespace(
cpu=True,
model="akyl_ai",
vocoder="hifigan_T2_v1",
)
CURRENTLY_LOADED_MODEL = args.model
def MATCHA_TTS_LOC(x):
return LOCATION / f"{x}.ckpt"
def VOCODER_LOC(x):
return LOCATION / f"{x}"
LOGO_URL = "https://github.com/simonlobgromov/Matcha-TTS/blob/main/photo_2024-04-07_15-59-52.png"
RADIO_OPTIONS = {
"Akyl_AI": {
"model": "akyl_ai",
"vocoder": "hifigan_T2_v1",
},
}
# Ensure all the required models are downloaded
assert_model_downloaded(MATCHA_TTS_LOC("akyl_ai"), MATCHA_URLS["akyl_ai"])
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
device = get_device(args)
# Load default model
model = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
def load_model(model_name, vocoder_name):
model = load_matcha(model_name, MATCHA_TTS_LOC(model_name), device)
vocoder, denoiser = load_vocoder(vocoder_name, VOCODER_LOC(vocoder_name), device)
return model, vocoder, denoiser
def load_model_ui(model_type, textbox):
model_name, vocoder_name = RADIO_OPTIONS[model_type]["model"], RADIO_OPTIONS[model_type]["vocoder"]
global model, vocoder, denoiser, CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
if CURRENTLY_LOADED_MODEL != model_name:
model, vocoder, denoiser = load_model(model_name, vocoder_name)
CURRENTLY_LOADED_MODEL = model_name
if model_name == "akyl_ai":
single_speaker_examples = gr.update(visible=True)
multi_speaker_examples = gr.update(visible=False)
length_scale = gr.update(value=0.95)
else:
single_speaker_examples = gr.update(visible=False)
multi_speaker_examples = gr.update(visible=True)
length_scale = gr.update(value=0.85)
return (
textbox,
gr.update(interactive=True),
single_speaker_examples,
multi_speaker_examples,
length_scale,
)
@torch.inference_mode()
def process_text_gradio(text):
output = process_text(1, text, device)
return output["x_phones"][1::2], output["x"], output["x_lengths"]
@torch.inference_mode()
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk=-1):
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
output = model.synthesise(
text,
text_length,
n_timesteps=n_timesteps,
temperature=temperature,
spks=spk,
length_scale=length_scale,
)
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
sf.write(fp.name, output["waveform"], 22050, "PCM_24")
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
if CURRENTLY_LOADED_MODEL == "akyl_ai":
global model, vocoder, denoiser # pylint: disable=global-statement
model, vocoder, denoiser = load_model("akyl_ai", "hifigan_T2_v1")
CURRENTLY_LOADED_MODEL = "akyl_ai"
phones, text, text_lengths = process_text_gradio(text)
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
return phones, audio, mel_spectrogram
def main():
description = """# AkylAI TTS Mini"""
with gr.Blocks(title="AkylAI TTS") as demo:
processed_text = gr.State(value=None)
processed_text_len = gr.State(value=None)
with gr.Box():
with gr.Row():
gr.Markdown(description, scale=3)
with gr.Row():
image_url = "https://github.com/simonlobgromov/Matcha-TTS/blob/main/photo_2024-04-07_15-59-52.png?raw=true"
gr.Image(image_url, label=None, width=660, height=315, show_label=False)
with gr.Box():
radio_options = list(RADIO_OPTIONS.keys())
model_type = gr.Radio(
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False, visible=False,
)
with gr.Row():
gr.Markdown("## Текстти кыргыз тилинде жазыңыз\n### Text Input")
with gr.Row():
text = gr.Textbox(value="", label=None, scale=3, show_label=False)
with gr.Row():
gr.Markdown("## Сүйлөө ылдамдыгы\n### Speaking rate")
# gr.Markdown("")
with gr.Row():
n_timesteps = gr.Slider(
label="Number of ODE steps",
minimum=1,
maximum=100,
step=1,
value=10,
interactive=True,
visible=False
)
length_scale = gr.Slider(
label=None,
minimum=0.5,
maximum=1,
step=0.05,
value=0.8,
interactive=True,
show_label=False
)
mel_temp = gr.Slider(
label="Sampling temperature",
minimum=0.00,
maximum=2.001,
step=0.16675,
value=0.667,
interactive=True,
visible=False
)
synth_btn = gr.Button("БАШТОО | RUN")
phonetised_text = gr.Textbox(interactive=False, scale=10, label=None, visible=False )
with gr.Box():
with gr.Row():
mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram", visible=False)
# with gr.Row():
audio = gr.Audio(interactive=False, label="Audio")
with gr.Row(visible=True) as example_row_lj_speech:
examples = gr.Examples( # pylint: disable=unused-variable
examples=[
[
"Баарыңарга салам, менин атым Акылай. Мен бардыгын бул жерде Инновация борборунда көргөнүмө абдан кубанычтамын.",
50,
0.677,
0.8,
],
[
"Мага колдоо көрсөтүп, мени тандагандарга ыраазымын. Айыл үчүн иштейбиз, жол курабыз, асфальт төшөйбүз”, — деген ал.",
2,
0.677,
0.8,
],
],
fn=ljspeech_example_cacher,
inputs=[text, n_timesteps, mel_temp, length_scale],
outputs=[phonetised_text, audio, mel_spectrogram],
cache_examples=True,
)
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
load_model_ui,
inputs=[model_type, text],
outputs=[text, synth_btn, example_row_lj_speech, length_scale],
)
synth_btn.click(
fn=process_text_gradio,
inputs=[
text,
],
outputs=[phonetised_text, processed_text, processed_text_len],
api_name="AkylAI TTS Mini",
queue=True,
).then(
fn=synthesise_mel,
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale],
outputs=[audio, mel_spectrogram],
)
demo.queue().launch()
if __name__ == "__main__":
main() |