Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
title = "🤖 AI ChatBot" | |
description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)" | |
examples = [["How are you?"]] | |
# tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") | |
# model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") | |
# Load model directly | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") | |
def user(message, history): | |
return "", history + [[message, None]] | |
def bot(history): | |
user_message = history[-1][0] | |
new_user_input_ids = tokenizer.encode( | |
user_message + tokenizer.eos_token, return_tensors="pt" | |
) | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([torch.LongTensor([]), new_user_input_ids], dim=-1) | |
# generate a response | |
response = model.generate( | |
bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id | |
).tolist() | |
# convert the tokens to text, and then split the responses into lines | |
response = tokenizer.decode(response[0]).split("<|endoftext|>") | |
response = [ | |
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) | |
] # convert to tuples of list | |
history[-1] = response[0] | |
return history | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.Button("Clear") | |
title=title | |
description=description | |
examples=examples | |
theme="london" | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.launch() | |
iface = gr.Interface( | |
) | |
iface.launch() | |