demo_chatbot / app.py
thenHung's picture
Update app.py
93d8ea6
raw
history blame
1.91 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
title = "🤖 AI ChatBot"
description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)"
examples = [["How are you?"]]
# tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
# model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
def user(message, history):
return "", history + [[message, None]]
def bot(history):
user_message = history[-1][0]
new_user_input_ids = tokenizer.encode(
user_message + tokenizer.eos_token, return_tensors="pt"
)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor([]), new_user_input_ids], dim=-1)
# generate a response
response = model.generate(
bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id
).tolist()
# convert the tokens to text, and then split the responses into lines
response = tokenizer.decode(response[0]).split("<|endoftext|>")
response = [
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
] # convert to tuples of list
history[-1] = response[0]
return history
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
title=title
description=description
examples=examples
theme="london"
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch()
iface = gr.Interface(
)
iface.launch()