import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch title = "🤖 AI ChatBot" description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)" examples = [["How are you?"]] # tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") # model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") def user(message, history): return "", history + [[message, None]] def bot(history): user_message = history[-1][0] new_user_input_ids = tokenizer.encode( user_message + tokenizer.eos_token, return_tensors="pt" ) # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor([]), new_user_input_ids], dim=-1) # generate a response response = model.generate( bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id ).tolist() # convert the tokens to text, and then split the responses into lines response = tokenizer.decode(response[0]).split("<|endoftext|>") response = [ (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) ] # convert to tuples of list history[-1] = response[0] return history with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") title=title description=description examples=examples theme="london" msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) demo.launch() iface = gr.Interface( ) iface.launch()