thepowerfuldeez's picture
Update app.py
ceecf11 verified
raw
history blame
1.68 kB
import gradio as gr
from arxiv2text import arxiv_to_text
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
def get_model(model_url="thepowerfuldeez/Qwen2-1.5B-Summarize", use_cpu=False):
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
if use_cpu:
model = AutoModelForCausalLM.from_pretrained(
model_url,
device_map="cpu",
load_in_4bit=True,
attn_implementation="flash_attention_2",
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_url,
bnb_4bit_compute_dtype=torch.bfloat16,
load_in_4bit=True,
attn_implementation="flash_attention_2",
)
return model, tokenizer
def call_llm(model, tokenizer, text):
messages = [
{"role": "system", "content": "You are helpful AI assistant."},
{"role": "user", "content": text},
]
input_ids = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
)
new_tokens = model.generate(input_ids, max_new_tokens=512)[0][len(input_ids[0]) :]
output = tokenizer.decode(new_tokens, skip_special_tokens=True)
return output
model, tokenizer = get_model(use_cpu=True)
def summarize_pdf(pdf_url):
extracted_text = arxiv_to_text(pdf_url)
summary = call_llm(model, tokenizer, f"Summarize following text: {extracted_text[:71000]}")
return summary
interface = gr.Interface(
fn=summarize_pdf,
inputs="text",
outputs="text",
title="Arxiv PDF Summarizer",
description="Enter the URL of an Arxiv PDF to get a summary."
)
interface.launch()