Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
import torch | |
class DenseResidualBlock(nn.Module): | |
""" | |
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18) | |
""" | |
def __init__(self, filters, res_scale=0.2): | |
super(DenseResidualBlock, self).__init__() | |
self.res_scale = res_scale | |
def block(in_features, non_linearity=True): | |
layers = [nn.Conv2d(in_features, filters, 3, 1, 1, bias=True)] | |
if non_linearity: | |
layers += [nn.LeakyReLU()] | |
return nn.Sequential(*layers) | |
self.b1 = block(in_features=1 * filters) | |
self.b2 = block(in_features=2 * filters) | |
self.b3 = block(in_features=3 * filters) | |
self.b4 = block(in_features=4 * filters) | |
self.b5 = block(in_features=5 * filters, non_linearity=False) | |
self.blocks = [self.b1, self.b2, self.b3, self.b4, self.b5] | |
def forward(self, x): | |
inputs = x | |
for block in self.blocks: | |
out = block(inputs) | |
inputs = torch.cat([inputs, out], 1) | |
return out.mul(self.res_scale) + x | |
class ResidualInResidualDenseBlock(nn.Module): | |
def __init__(self, filters, res_scale=0.2): | |
super(ResidualInResidualDenseBlock, self).__init__() | |
self.res_scale = res_scale | |
self.dense_blocks = nn.Sequential( | |
DenseResidualBlock(filters), DenseResidualBlock(filters), DenseResidualBlock(filters) | |
) | |
def forward(self, x): | |
return self.dense_blocks(x).mul(self.res_scale) + x | |
class GeneratorRRDB(nn.Module): | |
def __init__(self, channels, filters=64, num_res_blocks=16, num_upsample=2): | |
super(GeneratorRRDB, self).__init__() | |
# First layer | |
self.conv1 = nn.Conv2d(channels, filters, kernel_size=3, stride=1, padding=1) | |
# Residual blocks | |
self.res_blocks = nn.Sequential(*[ResidualInResidualDenseBlock(filters) for _ in range(num_res_blocks)]) | |
# Second conv layer post residual blocks | |
self.conv2 = nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1) | |
# Upsampling layers | |
upsample_layers = [] | |
for _ in range(num_upsample): | |
upsample_layers += [ | |
nn.Conv2d(filters, filters * 4, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(), | |
nn.PixelShuffle(upscale_factor=2), | |
] | |
self.upsampling = nn.Sequential(*upsample_layers) | |
# Final output block | |
self.conv3 = nn.Sequential( | |
nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(), | |
nn.Conv2d(filters, channels, kernel_size=3, stride=1, padding=1), | |
) | |
def forward(self, x): | |
out1 = self.conv1(x) | |
out = self.res_blocks(out1) | |
out2 = self.conv2(out) | |
out = torch.add(out1, out2) | |
out = self.upsampling(out) | |
out = self.conv3(out) | |
return out |