therealcyberlord
huggingface deployment
e4eca40
raw
history blame
2.94 kB
import torch.nn as nn
import torch
class DenseResidualBlock(nn.Module):
"""
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
"""
def __init__(self, filters, res_scale=0.2):
super(DenseResidualBlock, self).__init__()
self.res_scale = res_scale
def block(in_features, non_linearity=True):
layers = [nn.Conv2d(in_features, filters, 3, 1, 1, bias=True)]
if non_linearity:
layers += [nn.LeakyReLU()]
return nn.Sequential(*layers)
self.b1 = block(in_features=1 * filters)
self.b2 = block(in_features=2 * filters)
self.b3 = block(in_features=3 * filters)
self.b4 = block(in_features=4 * filters)
self.b5 = block(in_features=5 * filters, non_linearity=False)
self.blocks = [self.b1, self.b2, self.b3, self.b4, self.b5]
def forward(self, x):
inputs = x
for block in self.blocks:
out = block(inputs)
inputs = torch.cat([inputs, out], 1)
return out.mul(self.res_scale) + x
class ResidualInResidualDenseBlock(nn.Module):
def __init__(self, filters, res_scale=0.2):
super(ResidualInResidualDenseBlock, self).__init__()
self.res_scale = res_scale
self.dense_blocks = nn.Sequential(
DenseResidualBlock(filters), DenseResidualBlock(filters), DenseResidualBlock(filters)
)
def forward(self, x):
return self.dense_blocks(x).mul(self.res_scale) + x
class GeneratorRRDB(nn.Module):
def __init__(self, channels, filters=64, num_res_blocks=16, num_upsample=2):
super(GeneratorRRDB, self).__init__()
# First layer
self.conv1 = nn.Conv2d(channels, filters, kernel_size=3, stride=1, padding=1)
# Residual blocks
self.res_blocks = nn.Sequential(*[ResidualInResidualDenseBlock(filters) for _ in range(num_res_blocks)])
# Second conv layer post residual blocks
self.conv2 = nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1)
# Upsampling layers
upsample_layers = []
for _ in range(num_upsample):
upsample_layers += [
nn.Conv2d(filters, filters * 4, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(),
nn.PixelShuffle(upscale_factor=2),
]
self.upsampling = nn.Sequential(*upsample_layers)
# Final output block
self.conv3 = nn.Sequential(
nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(),
nn.Conv2d(filters, channels, kernel_size=3, stride=1, padding=1),
)
def forward(self, x):
out1 = self.conv1(x)
out = self.res_blocks(out1)
out2 = self.conv2(out)
out = torch.add(out1, out2)
out = self.upsampling(out)
out = self.conv3(out)
return out