Xingyu Bian
updated diarization pipeline and UI changes
6cd5da8
import gradio as gr
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import numpy as np
from pyannote.audio import Pipeline
import os
from dotenv import load_dotenv
import plotly.graph_objects as go
load_dotenv()
# Check and set device
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Model and pipeline setup
model_id = "distil-whisper/distil-small.en"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
torch_dtype=torch_dtype,
device=device,
)
diarization_pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1", use_auth_token=os.getenv("HF_KEY")
)
# returns diarization info such as segment start and end times, and speaker id
def diarization_info(res):
starts = []
ends = []
speakers = []
for segment, _, speaker in res.itertracks(yield_label=True):
starts.append(segment.start)
ends.append(segment.end)
speakers.append(speaker)
return starts, ends, speakers
# plot diarization results on a graph
def plot_diarization(starts, ends, speakers):
fig = go.Figure()
# Define a color map for different speakers
num_speakers = len(set(speakers))
colors = [f"hsl({h},80%,60%)" for h in np.linspace(0, 360, num_speakers)]
# Plot each segment with its speaker's color
for start, end, speaker in zip(starts, ends, speakers):
speaker_id = list(set(speakers)).index(speaker)
fig.add_trace(
go.Scatter(
x=[start, end],
y=[speaker_id, speaker_id],
mode="lines",
line=dict(color=colors[speaker_id], width=15),
showlegend=False,
)
)
fig.update_layout(
title="Speaker Diarization",
xaxis=dict(title="Time"),
yaxis=dict(title="Speaker"),
height=600,
width=800,
)
return fig
def transcribe(sr, data):
processed_data = np.array(data).astype(np.float32) / 32767.0
# results from the pipeline
transcription_res = pipe({"sampling_rate": sr, "raw": processed_data})["text"]
return transcription_res
def transcribe_diarize(audio):
sr, data = audio
processed_data = np.array(data).astype(np.float32) / 32767.0
waveform_tensor = torch.tensor(processed_data[np.newaxis, :])
transcription_res = transcribe(sr, data)
# results from the diarization pipeline
diarization_res = diarization_pipeline(
{"waveform": waveform_tensor, "sample_rate": sr}
)
# Get diarization information
starts, ends, speakers = diarization_info(diarization_res)
# results from the transcription pipeline
diarized_transcription = ""
# Get transcription results for each speaker segment
for start_time, end_time, speaker_id in zip(starts, ends, speakers):
segment = data[int(start_time * sr) : int(end_time * sr)]
diarized_transcription += f"{speaker_id} {round(start_time, 2)}:{round(end_time, 2)} \t {transcribe(sr, segment)}\n"
# Plot diarization
diarization_plot = plot_diarization(starts, ends, speakers)
return transcription_res, diarized_transcription, diarization_plot
# creating the gradio interface
demo = gr.Interface(
fn=transcribe_diarize,
inputs=gr.Audio(sources=["upload", "microphone"]),
outputs=[
gr.Textbox(lines=3, label="Text Transcription"),
gr.Textbox(label="Diarized Transcription"),
gr.Plot(label="Visualization"),
],
examples=["sample1.wav"],
title="Automatic Speech Recognition with Diarization 🗣️",
description="Transcribe your speech to text with distilled whisper and diarization with pyannote. Get started by recording from your mic or uploading an audio file (.wav) 🎙️",
)
if __name__ == "__main__":
demo.launch()