Thiago Hersan
fixed cached examples
3b5780d
raw
history blame
2.88 kB
import glob
import gradio as gr
import numpy as np
from os import environ
from PIL import Image
from torchvision import transforms as T
from transformers import MaskFormerForInstanceSegmentation, MaskFormerImageProcessor
example_images = sorted(glob.glob('examples/map*.jpg'))
ade_mean=[0.485, 0.456, 0.406]
ade_std=[0.229, 0.224, 0.225]
palette = [
[120, 120, 120], [4, 200, 4], [4, 4, 250], [6, 230, 230],
[80, 50, 50], [120, 120, 80], [140, 140, 140], [204, 5, 255]
]
model_id = f"thiagohersan/maskformer-satellite-trees"
# preprocessor = MaskFormerImageProcessor.from_pretrained(model_id)
preprocessor = MaskFormerImageProcessor(
do_resize=False,
do_normalize=False,
do_rescale=False,
ignore_index=255,
reduce_labels=False
)
hf_token = environ.get('HFTOKEN')
model = MaskFormerForInstanceSegmentation.from_pretrained(model_id, use_auth_token=hf_token)
test_transform = T.Compose([
T.ToTensor(),
T.Normalize(mean=ade_mean, std=ade_std)
])
def visualize_instance_seg_mask(img_in, mask, id2label):
img_out = np.zeros((mask.shape[0], mask.shape[1], 3))
image_total_pixels = mask.shape[0] * mask.shape[1]
label_ids = np.unique(mask)
vegetation_labels = ["vegetation"]
id2color = {id: palette[id] for id in label_ids}
id2count = {id: 0 for id in label_ids}
for i in range(img_out.shape[0]):
for j in range(img_out.shape[1]):
img_out[i, j, :] = id2color[mask[i, j]]
id2count[mask[i, j]] = id2count[mask[i, j]] + 1
image_res = (0.5 * img_in + 0.5 * img_out).astype(np.uint8)
dataframe = [[
f"{id2label[id]}",
f"{(100 * id2count[id] / image_total_pixels):.2f} %",
f"{np.sqrt(id2count[id] / image_total_pixels):.2f} m"
] for id in label_ids if id2label[id] in vegetation_labels]
if len(dataframe) < 1:
dataframe = [[
f"",
f"{(0):.2f} %",
f"{(0):.2f} m"
]]
return image_res, dataframe
def query_image(image_path):
img = np.array(Image.open(image_path))
img_size = (img.shape[0], img.shape[1])
inputs = preprocessor(images=test_transform(img), return_tensors="pt")
outputs = model(**inputs)
results = preprocessor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[img_size])[0]
mask_img, dataframe = visualize_instance_seg_mask(img, results.numpy(), model.config.id2label)
return mask_img, dataframe
demo = gr.Interface(
fn=query_image,
inputs=[gr.Image(type="filepath", label="Input Image")],
outputs=[
gr.Image(label="Vegetation"),
gr.DataFrame(label="Info", headers=["Object Label", "Pixel Percent", "Square Length"])
],
title="Maskformer Satellite+Trees",
allow_flagging="never",
analytics_enabled=None,
examples=example_images,
cache_examples=True
)
demo.launch(show_api=False)