{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import gradio as gr\n", "import numpy as np\n", "from PIL import Image as PImage\n", "from torchvision import transforms as T\n", "from transformers import MaskFormerForInstanceSegmentation, MaskFormerImageProcessor" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ade_mean=[0.485, 0.456, 0.406]\n", "ade_std=[0.229, 0.224, 0.225]\n", "\n", "model_id = f\"thiagohersan/maskformer-satellite-trees\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# preprocessor = MaskFormerImageProcessor.from_pretrained(model_id)\n", "preprocessor = MaskFormerImageProcessor(\n", " do_resize=False,\n", " do_normalize=False,\n", " do_rescale=False,\n", " ignore_index=255,\n", " reduce_labels=False\n", ")\n", "\n", "model = MaskFormerForInstanceSegmentation.from_pretrained(model_id)\n", "\n", "test_transform = T.Compose([\n", " T.ToTensor(),\n", " T.Normalize(mean=ade_mean, std=ade_std)\n", "])\n", "\n", "with PImage.open(\"../color-filter-calculator/assets/Artshack_screen.jpg\") as img:\n", " img_size = (img.height, img.width)\n", " norm_image = test_transform(np.array(img))\n", " inputs = preprocessor(images=norm_image, return_tensors=\"pt\")\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "outputs = model(**inputs)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "results = preprocessor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[img_size])[0]\n", "results = results.numpy()\n", "\n", "labels = np.unique(results)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for label_id in labels:\n", " print(model.config.id2label[label_id])" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.8.15 ('hf-gradio')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.15" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "4888b226c77b860705e4be316b14a092026f41c3585ee0ddb38f3008c0cb495e" } } }, "nbformat": 4, "nbformat_minor": 2 }