Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import random | |
import gradio as gr | |
import numpy as np | |
import torch | |
from model import Model | |
DESCRIPTION = '# [UniDiffuser](https://github.com/thu-ml/unidiffuser)' | |
SPACE_ID = os.getenv('SPACE_ID') | |
if SPACE_ID is not None: | |
DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>' | |
if not torch.cuda.is_available(): | |
DESCRIPTION += '\n<p>Running on CPU 🥶</p>' | |
model = Model() | |
MAX_SEED = np.iinfo(np.int32).max | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def create_demo(mode_name: str) -> gr.Blocks: | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
mode = gr.Dropdown(label='Mode', | |
choices=[ | |
't2i', | |
'i2t', | |
'joint', | |
'i', | |
't', | |
'i2t2i', | |
't2i2t', | |
], | |
value=mode_name, | |
visible=False) | |
prompt = gr.Text(label='Prompt', | |
max_lines=1, | |
visible=mode_name in ['t2i', 't2i2t']) | |
image = gr.Image(label='Input image', | |
type='pil', | |
visible=mode_name in ['i2t', 'i2t2i']) | |
run_button = gr.Button('Run') | |
with gr.Accordion('Advanced options', open=False): | |
seed = gr.Slider(label='Seed', | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0) | |
randomize_seed = gr.Checkbox(label='Randomize seed', | |
value=True) | |
num_steps = gr.Slider(label='Steps', | |
minimum=1, | |
maximum=100, | |
value=20, | |
step=1) | |
guidance_scale = gr.Slider(label='Guidance Scale', | |
minimum=0.1, | |
maximum=30.0, | |
value=8.0, | |
step=0.1) | |
with gr.Column(): | |
result_image = gr.Image(label='Generated image', | |
visible=mode_name | |
in ['t2i', 'i', 'joint', 'i2t2i']) | |
result_text = gr.Text(label='Generated text', | |
visible=mode_name | |
in ['i2t', 't', 'joint', 't2i2t']) | |
inputs = [ | |
mode, | |
prompt, | |
image, | |
seed, | |
num_steps, | |
guidance_scale, | |
] | |
outputs = [ | |
result_image, | |
result_text, | |
] | |
prompt.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
).then( | |
fn=model.run, | |
inputs=inputs, | |
outputs=outputs, | |
) | |
run_button.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
).then( | |
fn=model.run, | |
inputs=inputs, | |
outputs=outputs, | |
api_name=f'run_{mode_name}', | |
) | |
return demo | |
with gr.Blocks(css='style.css') as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Tabs(): | |
with gr.TabItem('text2image'): | |
create_demo('t2i') | |
with gr.TabItem('image2text'): | |
create_demo('i2t') | |
with gr.TabItem('image variation'): | |
create_demo('i2t2i') | |
with gr.TabItem('joint generation'): | |
create_demo('joint') | |
with gr.TabItem('image generation'): | |
create_demo('i') | |
with gr.TabItem('text generation'): | |
create_demo('t') | |
with gr.TabItem('text variation'): | |
create_demo('t2i2t') | |
demo.queue(max_size=15).launch() | |