unidiffuser / app.py
hysts's picture
hysts HF staff
Use diffusers implementation
2881ba6
raw
history blame
4.87 kB
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import gradio as gr
import numpy as np
import torch
from model import Model
DESCRIPTION = '# [UniDiffuser](https://github.com/thu-ml/unidiffuser)'
SPACE_ID = os.getenv('SPACE_ID')
if SPACE_ID is not None:
DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
if not torch.cuda.is_available():
DESCRIPTION += '\n<p>Running on CPU 🥶</p>'
model = Model()
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def create_demo(mode_name: str) -> gr.Blocks:
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
mode = gr.Dropdown(label='Mode',
choices=[
't2i',
'i2t',
'joint',
'i',
't',
'i2t2i',
't2i2t',
],
value=mode_name,
visible=False)
prompt = gr.Text(label='Prompt',
max_lines=1,
visible=mode_name in ['t2i', 't2i2t'])
image = gr.Image(label='Input image',
type='pil',
visible=mode_name in ['i2t', 'i2t2i'])
run_button = gr.Button('Run')
with gr.Accordion('Advanced options', open=False):
seed = gr.Slider(label='Seed',
minimum=0,
maximum=MAX_SEED,
step=1,
value=0)
randomize_seed = gr.Checkbox(label='Randomize seed',
value=True)
num_steps = gr.Slider(label='Steps',
minimum=1,
maximum=100,
value=20,
step=1)
guidance_scale = gr.Slider(label='Guidance Scale',
minimum=0.1,
maximum=30.0,
value=8.0,
step=0.1)
with gr.Column():
result_image = gr.Image(label='Generated image',
visible=mode_name
in ['t2i', 'i', 'joint', 'i2t2i'])
result_text = gr.Text(label='Generated text',
visible=mode_name
in ['i2t', 't', 'joint', 't2i2t'])
inputs = [
mode,
prompt,
image,
seed,
num_steps,
guidance_scale,
]
outputs = [
result_image,
result_text,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
).then(
fn=model.run,
inputs=inputs,
outputs=outputs,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
).then(
fn=model.run,
inputs=inputs,
outputs=outputs,
api_name=f'run_{mode_name}',
)
return demo
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem('text2image'):
create_demo('t2i')
with gr.TabItem('image2text'):
create_demo('i2t')
with gr.TabItem('image variation'):
create_demo('i2t2i')
with gr.TabItem('joint generation'):
create_demo('joint')
with gr.TabItem('image generation'):
create_demo('i')
with gr.TabItem('text generation'):
create_demo('t')
with gr.TabItem('text variation'):
create_demo('t2i2t')
demo.queue(max_size=15).launch()