|
""" |
|
A model worker executes the model. |
|
""" |
|
import argparse |
|
import asyncio |
|
from concurrent.futures import ThreadPoolExecutor |
|
import json |
|
import time |
|
import threading |
|
import uuid |
|
|
|
from fastapi import FastAPI, Request, BackgroundTasks |
|
from fastapi.responses import StreamingResponse |
|
import requests |
|
import re |
|
import uvicorn |
|
from functools import partial |
|
|
|
from llava.constants import WORKER_HEART_BEAT_INTERVAL |
|
from llava.utils import (build_logger, server_error_msg, |
|
pretty_print_semaphore) |
|
from llava.mm_utils import process_images, load_image_from_base64, tokenizer_image_token, expand2square |
|
from llava.constants import DEFAULT_IMAGE_TOKEN |
|
|
|
import sglang as sgl |
|
from sglang.backend.runtime_endpoint import RuntimeEndpoint |
|
|
|
|
|
GB = 1 << 30 |
|
|
|
worker_id = str(uuid.uuid4())[:6] |
|
logger = build_logger("model_worker", f"model_worker_{worker_id}.log") |
|
global_counter = 0 |
|
|
|
model_semaphore = None |
|
|
|
|
|
def heart_beat_worker(controller): |
|
while True: |
|
time.sleep(WORKER_HEART_BEAT_INTERVAL) |
|
controller.send_heart_beat() |
|
|
|
|
|
@sgl.function |
|
def pipeline(s, prompt, max_tokens): |
|
for p in prompt: |
|
if type(p) is str: |
|
s += p |
|
else: |
|
s += sgl.image(p) |
|
s += sgl.gen("response", max_tokens=max_tokens) |
|
|
|
|
|
class ModelWorker: |
|
def __init__(self, controller_addr, worker_addr, sgl_endpoint, |
|
worker_id, no_register, model_name): |
|
self.controller_addr = controller_addr |
|
self.worker_addr = worker_addr |
|
self.worker_id = worker_id |
|
|
|
|
|
backend = RuntimeEndpoint(sgl_endpoint) |
|
sgl.set_default_backend(backend) |
|
model_path = backend.model_info["model_path"] |
|
|
|
if model_path.endswith("/"): |
|
model_path = model_path[:-1] |
|
if model_name is None: |
|
model_paths = model_path.split("/") |
|
if model_paths[-1].startswith('checkpoint-'): |
|
self.model_name = model_paths[-2] + "_" + model_paths[-1] |
|
else: |
|
self.model_name = model_paths[-1] |
|
else: |
|
self.model_name = model_name |
|
|
|
logger.info(f"Loading the SGLANG model {self.model_name} on worker {worker_id} ...") |
|
|
|
if not no_register: |
|
self.register_to_controller() |
|
self.heart_beat_thread = threading.Thread( |
|
target=heart_beat_worker, args=(self,), daemon=True) |
|
self.heart_beat_thread.start() |
|
|
|
def register_to_controller(self): |
|
logger.info("Register to controller") |
|
|
|
url = self.controller_addr + "/register_worker" |
|
data = { |
|
"worker_name": self.worker_addr, |
|
"check_heart_beat": True, |
|
"worker_status": self.get_status() |
|
} |
|
r = requests.post(url, json=data) |
|
assert r.status_code == 200 |
|
|
|
def send_heart_beat(self): |
|
logger.info(f"Send heart beat. Models: {[self.model_name]}. " |
|
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " |
|
f"global_counter: {global_counter}") |
|
|
|
url = self.controller_addr + "/receive_heart_beat" |
|
|
|
while True: |
|
try: |
|
ret = requests.post(url, json={ |
|
"worker_name": self.worker_addr, |
|
"queue_length": self.get_queue_length()}, timeout=5) |
|
exist = ret.json()["exist"] |
|
break |
|
except requests.exceptions.RequestException as e: |
|
logger.error(f"heart beat error: {e}") |
|
time.sleep(5) |
|
|
|
if not exist: |
|
self.register_to_controller() |
|
|
|
def get_queue_length(self): |
|
if model_semaphore is None: |
|
return 0 |
|
else: |
|
return args.limit_model_concurrency - model_semaphore._value + (len( |
|
model_semaphore._waiters) if model_semaphore._waiters is not None else 0) |
|
|
|
def get_status(self): |
|
return { |
|
"model_names": [self.model_name], |
|
"speed": 1, |
|
"queue_length": self.get_queue_length(), |
|
} |
|
|
|
async def generate_stream(self, params): |
|
ori_prompt = prompt = params["prompt"] |
|
images = params.get("images", None) |
|
if images is not None and len(images) > 0: |
|
if len(images) > 0: |
|
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): |
|
raise ValueError("Number of images does not match number of <image> tokens in prompt") |
|
|
|
images = [load_image_from_base64(image) for image in images] |
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt = prompt.replace(' ' + DEFAULT_IMAGE_TOKEN + '\n', DEFAULT_IMAGE_TOKEN) |
|
prompt_split = prompt.split(DEFAULT_IMAGE_TOKEN) |
|
prompt = [] |
|
for i in range(len(prompt_split)): |
|
prompt.append(prompt_split[i]) |
|
if i < len(images): |
|
prompt.append(images[i]) |
|
else: |
|
prompt = [prompt] |
|
|
|
temperature = float(params.get("temperature", 1.0)) |
|
top_p = float(params.get("top_p", 1.0)) |
|
|
|
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) |
|
stop_str = params.get("stop", None) |
|
stop_str = [stop_str] if stop_str is not None else None |
|
|
|
print({'prompt': prompt, 'max_new_tokens': max_new_tokens, 'temperature': temperature, 'top_p': top_p}) |
|
state = pipeline.run(prompt, max_new_tokens, temperature=temperature, top_p=top_p, stream=True) |
|
|
|
generated_text = ori_prompt |
|
async for text_outputs in state.text_async_iter(var_name="response"): |
|
generated_text += text_outputs |
|
yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0" |
|
|
|
async def generate_stream_gate(self, params): |
|
try: |
|
async for x in self.generate_stream(params): |
|
yield x |
|
except ValueError as e: |
|
print("Caught ValueError:", e) |
|
ret = { |
|
"text": server_error_msg, |
|
"error_code": 1, |
|
} |
|
yield json.dumps(ret).encode() + b"\0" |
|
except Exception as e: |
|
print("Caught Unknown Error", e) |
|
ret = { |
|
"text": server_error_msg, |
|
"error_code": 1, |
|
} |
|
yield json.dumps(ret).encode() + b"\0" |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
def release_model_semaphore(fn=None): |
|
model_semaphore.release() |
|
if fn is not None: |
|
fn() |
|
|
|
|
|
@app.post("/worker_generate_stream") |
|
async def generate_stream(request: Request): |
|
global model_semaphore, global_counter |
|
global_counter += 1 |
|
params = await request.json() |
|
|
|
if model_semaphore is None: |
|
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) |
|
await model_semaphore.acquire() |
|
worker.send_heart_beat() |
|
generator = worker.generate_stream_gate(params) |
|
background_tasks = BackgroundTasks() |
|
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) |
|
return StreamingResponse(generator, background=background_tasks) |
|
|
|
|
|
@app.post("/worker_get_status") |
|
async def get_status(request: Request): |
|
return worker.get_status() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--host", type=str, default="localhost") |
|
parser.add_argument("--port", type=int, default=21002) |
|
parser.add_argument("--worker-address", type=str, |
|
default="http://localhost:21002") |
|
parser.add_argument("--controller-address", type=str, |
|
default="http://localhost:21001") |
|
parser.add_argument("--model-name", type=str) |
|
parser.add_argument("--sgl-endpoint", type=str) |
|
parser.add_argument("--limit-model-concurrency", type=int, default=5) |
|
parser.add_argument("--stream-interval", type=int, default=1) |
|
parser.add_argument("--no-register", action="store_true") |
|
args = parser.parse_args() |
|
logger.info(f"args: {args}") |
|
|
|
worker = ModelWorker(args.controller_address, |
|
args.worker_address, |
|
args.sgl_endpoint, |
|
worker_id, |
|
args.no_register, |
|
args.model_name) |
|
uvicorn.run(app, host=args.host, port=args.port, log_level="info") |
|
|