to-be's picture
Update app.py
e5645de
raw
history blame
3.46 kB
import torch
import torch.nn.functional as F
import os
from skimage import img_as_ubyte
import cv2
import argparse
import shutil
import gradio as gr
from PIL import Image
examples = [['sample1.png'],
['sample2.png']]
inference_on = ['Full Resolution Image', 'Downsampled Image']
title = "Restormer"
description = """
Gradio demo for <b>Restormer: Efficient Transformer for High-Resolution Image Restoration</b>, CVPR 2022--ORAL. <a href='https://arxiv.org/abs/2111.09881'>[Paper]</a><a href='https://github.com/swz30/Restormer'>[Github Code]</a>\n
<b> Note:</b> Since this demo uses CPU, by default it will run on the downsampled version of the input image (for speedup). But if you want to perform inference on the original input, then choose the option "Full Resolution Image" from the dropdown menu.
"""
##With Restormer, you can perform: (1) Image Denoising, (2) Defocus Deblurring, (3) Motion Deblurring, and (4) Image Deraining.
##To use it, simply upload your own image, or click one of the examples provided below.
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.09881'>Restormer: Efficient Transformer for High-Resolution Image Restoration </a> | <a href='https://github.com/swz30/Restormer'>Github Repo</a></p>"
def inference(img, task, run_on):
if not os.path.exists('temp'):
os.system('mkdir temp')
if run_on == 'Full Resolution Image':
img = img
else: # 'Downsampled Image'
#### Resize the longer edge of the input image
max_res = 512
width, height = img.size
if max(width,height) > max_res:
scale = max_res /max(width,height)
width = int(scale*width)
height = int(scale*height)
img = img.resize((width,height), Image.ANTIALIAS)
model = torch.jit.load('deshabby.pth')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model.eval()
img_multiple_of = 8
with torch.inference_mode():
if torch.cuda.is_available():
torch.cuda.ipc_collect()
torch.cuda.empty_cache()
img = cv2.cvtColor(cv2.imread(args.input_path), cv2.COLOR_BGR2RGB)
input_ = torch.from_numpy(img).float().div(255.).permute(2,0,1).unsqueeze(0).to(device)
# Pad the input if not_multiple_of 8
h,w = input_.shape[2], input_.shape[3]
H,W = ((h+img_multiple_of)//img_multiple_of)*img_multiple_of, ((w+img_multiple_of)//img_multiple_of)*img_multiple_of
padh = H-h if h%img_multiple_of!=0 else 0
padw = W-w if w%img_multiple_of!=0 else 0
input_ = F.pad(input_, (0,padw,0,padh), 'reflect')
restored = torch.clamp(model(input_),0,1)
# Unpad the output
restored = img_as_ubyte(restored[:,:,:h,:w].permute(0, 2, 3, 1).cpu().detach().numpy()[0])
#convert to pil when returning
return Image.fromarray(cv2.cvtColor(restored, cv2.COLOR_RGB2BGR))
gr.Interface(
inference,
[
gr.Image(type="pil", label="Input"),
gr.Radio(["Deraining"], default="Denoising", label='task'),
gr.Dropdown(choices=inference_on, type="value", default='Downsampled Image', label='Inference on')
],
gr.Image(type="pil", label="cleaned and restored"),
title=title,
description=description,
article=article,
examples=examples,
).launch(debug=False,enable_queue=True)