Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
import os | |
from skimage import img_as_ubyte | |
import cv2 | |
import argparse | |
import shutil | |
import gradio as gr | |
from PIL import Image | |
from runpy import run_path | |
import numpy as np | |
examples = [['./sample1.png'],['./sample2.png'],['./Sample3.png'],['./Sample4.png'],['./Sample5.png'],['./Sample6.png'] | |
] | |
title = "Restormer" | |
description = """ | |
Gradio demo for reconstruction of noisy scanned, photocopied documents\n | |
using <b>Restormer: Efficient Transformer for High-Resolution Image Restoration</b>, CVPR 2022--ORAL. <a href='https://arxiv.org/abs/2111.09881'>[Paper]</a><a href='https://github.com/swz30/Restormer'>[Github Code]</a>\n | |
<a href='https://toon-beerten.medium.com/denoising-and-reconstructing-dirty-documents-for-optimal-digitalization-ed3a186aa3d6'>[See my article for more details]</a>\n | |
<b> Note:</b> Since this demo uses CPU, by default it will run on the downsampled version of the input image (for speedup). | |
""" | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.09881'>Restormer: Efficient Transformer for High-Resolution Image Restoration </a> | <a href='https://github.com/swz30/Restormer'>Github Repo</a></p>" | |
def inference(img): | |
if not os.path.exists('temp'): | |
os.system('mkdir temp') | |
# 'Downsampled Image' | |
#### Resize the longer edge of the input image | |
max_res = 400 | |
width, height = img.size | |
if max(width,height) > max_res: | |
scale = max_res /max(width,height) | |
width = int(scale*width) | |
height = int(scale*height) | |
img = img.resize((width,height)) | |
parameters = {'inp_channels':3, 'out_channels':3, 'dim':48, 'num_blocks':[4,6,6,8], 'num_refinement_blocks':4, 'heads':[1,2,4,8], 'ffn_expansion_factor':2.66, 'bias':False, 'LayerNorm_type':'WithBias', 'dual_pixel_task':False} | |
load_arch = run_path('restormer_arch.py') | |
model = load_arch['Restormer'](**parameters) | |
checkpoint = torch.load('net_g_92000.pth') | |
model.load_state_dict(checkpoint['params']) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = model.to(device) | |
model.eval() | |
img_multiple_of = 8 | |
with torch.inference_mode(): | |
if torch.cuda.is_available(): | |
torch.cuda.ipc_collect() | |
torch.cuda.empty_cache() | |
open_cv_image = np.array(img) | |
img = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB) | |
input_ = torch.from_numpy(img).float().div(255.).permute(2,0,1).unsqueeze(0).to(device) | |
# Pad the input if not_multiple_of 8 | |
h,w = input_.shape[2], input_.shape[3] | |
H,W = ((h+img_multiple_of)//img_multiple_of)*img_multiple_of, ((w+img_multiple_of)//img_multiple_of)*img_multiple_of | |
padh = H-h if h%img_multiple_of!=0 else 0 | |
padw = W-w if w%img_multiple_of!=0 else 0 | |
input_ = F.pad(input_, (0,padw,0,padh), 'reflect') | |
restored = torch.clamp(model(input_),0,1) | |
# Unpad the output | |
restored = img_as_ubyte(restored[:,:,:h,:w].permute(0, 2, 3, 1).cpu().detach().numpy()[0]) | |
#convert to pil when returning | |
return Image.fromarray(cv2.cvtColor(restored, cv2.COLOR_RGB2BGR)) | |
gr.Interface( | |
inference, | |
[ | |
gr.Image(type="pil", label="Input"), | |
], | |
gr.Image(type="pil", label="cleaned and restored"), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
).launch(debug=False,enable_queue=True) | |