import torch import torch.nn.functional as F import os from skimage import img_as_ubyte import cv2 import argparse import shutil import gradio as gr from PIL import Image from runpy import run_path examples = [['sample1.png'], ['sample2.png']] inference_on = ['Full Resolution Image', 'Downsampled Image'] title = "Restormer" description = """ Gradio demo for Restormer: Efficient Transformer for High-Resolution Image Restoration, CVPR 2022--ORAL. [Paper][Github Code]\n Note: Since this demo uses CPU, by default it will run on the downsampled version of the input image (for speedup). But if you want to perform inference on the original input, then choose the option "Full Resolution Image" from the dropdown menu. """ ##With Restormer, you can perform: (1) Image Denoising, (2) Defocus Deblurring, (3) Motion Deblurring, and (4) Image Deraining. ##To use it, simply upload your own image, or click one of the examples provided below. article = "
Restormer: Efficient Transformer for High-Resolution Image Restoration | Github Repo
" def inference(img, task, run_on): if not os.path.exists('temp'): os.system('mkdir temp') if run_on == 'Full Resolution Image': img = img else: # 'Downsampled Image' #### Resize the longer edge of the input image max_res = 512 width, height = img.size if max(width,height) > max_res: scale = max_res /max(width,height) width = int(scale*width) height = int(scale*height) img = img.resize((width,height), Image.ANTIALIAS) parameters = {'inp_channels':3, 'out_channels':3, 'dim':48, 'num_blocks':[4,6,6,8], 'num_refinement_blocks':4, 'heads':[1,2,4,8], 'ffn_expansion_factor':2.66, 'bias':False, 'LayerNorm_type':'WithBias', 'dual_pixel_task':False} load_arch = run_path('restormer_arch.py') model = load_arch['Restormer'](**parameters) checkpoint = torch.load('deshabby.pt') model.load_state_dict(checkpoint['params']) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) model.eval() img_multiple_of = 8 with torch.inference_mode(): if torch.cuda.is_available(): torch.cuda.ipc_collect() torch.cuda.empty_cache() img = cv2.cvtColor(cv2.imread(args.input_path), cv2.COLOR_BGR2RGB) input_ = torch.from_numpy(img).float().div(255.).permute(2,0,1).unsqueeze(0).to(device) # Pad the input if not_multiple_of 8 h,w = input_.shape[2], input_.shape[3] H,W = ((h+img_multiple_of)//img_multiple_of)*img_multiple_of, ((w+img_multiple_of)//img_multiple_of)*img_multiple_of padh = H-h if h%img_multiple_of!=0 else 0 padw = W-w if w%img_multiple_of!=0 else 0 input_ = F.pad(input_, (0,padw,0,padh), 'reflect') restored = torch.clamp(model(input_),0,1) # Unpad the output restored = img_as_ubyte(restored[:,:,:h,:w].permute(0, 2, 3, 1).cpu().detach().numpy()[0]) #convert to pil when returning return Image.fromarray(cv2.cvtColor(restored, cv2.COLOR_RGB2BGR)) gr.Interface( inference, [ gr.Image(type="pil", label="Input"), gr.Radio(["Deraining"], default="Denoising", label='task'), gr.Dropdown(choices=inference_on, type="value", default='Downsampled Image', label='Inference on') ], gr.Image(type="pil", label="cleaned and restored"), title=title, description=description, article=article, examples=examples, ).launch(debug=False,enable_queue=True)