|
|
|
|
|
from __future__ import annotations |
|
|
|
import os |
|
import random |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
|
|
DESCRIPTION = '# SD-XL' |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv( |
|
'CACHE_EXAMPLES') == '1' |
|
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024')) |
|
USE_TORCH_COMPILE = os.getenv('USE_TORCH_COMPILE') == '1' |
|
ENABLE_CPU_OFFLOAD = os.getenv('ENABLE_CPU_OFFLOAD') == '1' |
|
|
|
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') |
|
if torch.cuda.is_available(): |
|
model = "tkurtulus/sdxl_tk" |
|
pipe = DiffusionPipeline.from_pretrained( |
|
model, |
|
torch_dtype=torch.float16, |
|
variant='fp16') |
|
pipe.load_lora_weights(model, weight_name="pytorch_lora_weights.safetensors") |
|
|
|
refiner = DiffusionPipeline.from_pretrained( |
|
'stabilityai/stable-diffusion-xl-refiner-1.0', |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
variant='fp16') |
|
|
|
if ENABLE_CPU_OFFLOAD: |
|
pipe.enable_model_cpu_offload() |
|
refiner.enable_model_cpu_offload() |
|
else: |
|
pipe.to(device) |
|
refiner.to(device) |
|
|
|
if USE_TORCH_COMPILE: |
|
pipe.unet = torch.compile(pipe.unet, |
|
mode='reduce-overhead', |
|
fullgraph=True) |
|
else: |
|
pipe = None |
|
refiner = None |
|
|
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
|
|
def generate(prompt: str, |
|
negative_prompt: str = '', |
|
prompt_2: str = '', |
|
negative_prompt_2: str = '', |
|
use_negative_prompt: bool = False, |
|
use_prompt_2: bool = False, |
|
use_negative_prompt_2: bool = False, |
|
seed: int = 0, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale_base: float = 5.0, |
|
guidance_scale_refiner: float = 5.0, |
|
num_inference_steps_base: int = 50, |
|
num_inference_steps_refiner: int = 50, |
|
apply_refiner: bool = False) -> PIL.Image.Image: |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
if not use_negative_prompt: |
|
negative_prompt = None |
|
if not use_prompt_2: |
|
prompt_2 = None |
|
if not use_negative_prompt_2: |
|
negative_prompt_2 = None |
|
|
|
if not apply_refiner: |
|
return pipe(prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
prompt_2=prompt_2, |
|
negative_prompt_2=negative_prompt_2, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale_base, |
|
num_inference_steps=num_inference_steps_base, |
|
generator=generator, |
|
output_type='pil').images[0] |
|
else: |
|
latents = pipe(prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
prompt_2=prompt_2, |
|
negative_prompt_2=negative_prompt_2, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale_base, |
|
num_inference_steps=num_inference_steps_base, |
|
generator=generator, |
|
output_type='latent').images |
|
image = refiner(prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
prompt_2=prompt_2, |
|
negative_prompt_2=negative_prompt_2, |
|
guidance_scale=guidance_scale_refiner, |
|
num_inference_steps=num_inference_steps_refiner, |
|
image=latents, |
|
generator=generator).images[0] |
|
return image |
|
|
|
|
|
examples = [ |
|
'Astronaut in a jungle, cold color palette, muted colors, detailed, 8k', |
|
'An astronaut riding a green horse', |
|
] |
|
|
|
with gr.Blocks(css='style.css') as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.DuplicateButton(value='Duplicate Space for private use', |
|
elem_id='duplicate-button', |
|
visible=os.getenv('SHOW_DUPLICATE_BUTTON') == '1') |
|
with gr.Box(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label='Prompt', |
|
show_label=False, |
|
max_lines=1, |
|
placeholder='Enter your prompt', |
|
container=False, |
|
) |
|
run_button = gr.Button('Run', scale=0) |
|
result = gr.Image(label='Result', show_label=False) |
|
with gr.Accordion('Advanced options', open=False): |
|
with gr.Row(): |
|
use_negative_prompt = gr.Checkbox(label='Use negative prompt', |
|
value=False) |
|
use_prompt_2 = gr.Checkbox(label='Use prompt 2', value=False) |
|
use_negative_prompt_2 = gr.Checkbox( |
|
label='Use negative prompt 2', value=False) |
|
negative_prompt = gr.Text( |
|
label='Negative prompt', |
|
max_lines=1, |
|
placeholder='Enter a negative prompt', |
|
visible=False, |
|
) |
|
prompt_2 = gr.Text( |
|
label='Prompt 2', |
|
max_lines=1, |
|
placeholder='Enter your prompt', |
|
visible=False, |
|
) |
|
negative_prompt_2 = gr.Text( |
|
label='Negative prompt 2', |
|
max_lines=1, |
|
placeholder='Enter a negative prompt', |
|
visible=False, |
|
) |
|
|
|
seed = gr.Slider(label='Seed', |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0) |
|
randomize_seed = gr.Checkbox(label='Randomize seed', value=True) |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label='Width', |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label='Height', |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
apply_refiner = gr.Checkbox(label='Apply refiner', value=False) |
|
with gr.Row(): |
|
guidance_scale_base = gr.Slider( |
|
label='Guidance scale for base', |
|
minimum=1, |
|
maximum=20, |
|
step=0.1, |
|
value=5.0) |
|
num_inference_steps_base = gr.Slider( |
|
label='Number of inference steps for base', |
|
minimum=10, |
|
maximum=100, |
|
step=1, |
|
value=50) |
|
with gr.Row(visible=False) as refiner_params: |
|
guidance_scale_refiner = gr.Slider( |
|
label='Guidance scale for refiner', |
|
minimum=1, |
|
maximum=20, |
|
step=0.1, |
|
value=5.0) |
|
num_inference_steps_refiner = gr.Slider( |
|
label='Number of inference steps for refiner', |
|
minimum=10, |
|
maximum=100, |
|
step=1, |
|
value=50) |
|
|
|
gr.Examples(examples=examples, |
|
inputs=prompt, |
|
outputs=result, |
|
fn=generate, |
|
cache_examples=CACHE_EXAMPLES) |
|
|
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
queue=False, |
|
api_name=False, |
|
) |
|
use_prompt_2.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_prompt_2, |
|
outputs=prompt_2, |
|
queue=False, |
|
api_name=False, |
|
) |
|
use_negative_prompt_2.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt_2, |
|
outputs=negative_prompt_2, |
|
queue=False, |
|
api_name=False, |
|
) |
|
apply_refiner.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=apply_refiner, |
|
outputs=refiner_params, |
|
queue=False, |
|
api_name=False, |
|
) |
|
|
|
inputs = [ |
|
prompt, |
|
negative_prompt, |
|
prompt_2, |
|
negative_prompt_2, |
|
use_negative_prompt, |
|
use_prompt_2, |
|
use_negative_prompt_2, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale_base, |
|
guidance_scale_refiner, |
|
num_inference_steps_base, |
|
num_inference_steps_refiner, |
|
apply_refiner, |
|
] |
|
prompt.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=generate, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name='run', |
|
) |
|
negative_prompt.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=generate, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
prompt_2.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=generate, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
negative_prompt_2.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=generate, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
run_button.click( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=generate, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
demo.queue(max_size=20).launch() |
|
|