Spaces:
Runtime error
Runtime error
import cog | |
import tempfile | |
from pathlib import Path | |
import argparse | |
import shutil | |
import os | |
import cv2 | |
import glob | |
import torch | |
from collections import OrderedDict | |
import numpy as np | |
from main_test_swinir import define_model, setup, get_image_pair | |
class Predictor(cog.Predictor): | |
def setup(self): | |
model_dir = 'experiments/pretrained_models' | |
self.model_zoo = { | |
'real_sr': { | |
4: os.path.join(model_dir, '003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth') | |
}, | |
'gray_dn': { | |
15: os.path.join(model_dir, '004_grayDN_DFWB_s128w8_SwinIR-M_noise15.pth'), | |
25: os.path.join(model_dir, '004_grayDN_DFWB_s128w8_SwinIR-M_noise25.pth'), | |
50: os.path.join(model_dir, '004_grayDN_DFWB_s128w8_SwinIR-M_noise50.pth') | |
}, | |
'color_dn': { | |
15: os.path.join(model_dir, '005_colorDN_DFWB_s128w8_SwinIR-M_noise15.pth'), | |
25: os.path.join(model_dir, '005_colorDN_DFWB_s128w8_SwinIR-M_noise25.pth'), | |
50: os.path.join(model_dir, '005_colorDN_DFWB_s128w8_SwinIR-M_noise50.pth') | |
}, | |
'jpeg_car': { | |
10: os.path.join(model_dir, '006_CAR_DFWB_s126w7_SwinIR-M_jpeg10.pth'), | |
20: os.path.join(model_dir, '006_CAR_DFWB_s126w7_SwinIR-M_jpeg20.pth'), | |
30: os.path.join(model_dir, '006_CAR_DFWB_s126w7_SwinIR-M_jpeg30.pth'), | |
40: os.path.join(model_dir, '006_CAR_DFWB_s126w7_SwinIR-M_jpeg40.pth') | |
} | |
} | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--task', type=str, default='real_sr', help='classical_sr, lightweight_sr, real_sr, ' | |
'gray_dn, color_dn, jpeg_car') | |
parser.add_argument('--scale', type=int, default=1, help='scale factor: 1, 2, 3, 4, 8') # 1 for dn and jpeg car | |
parser.add_argument('--noise', type=int, default=15, help='noise level: 15, 25, 50') | |
parser.add_argument('--jpeg', type=int, default=40, help='scale factor: 10, 20, 30, 40') | |
parser.add_argument('--training_patch_size', type=int, default=128, help='patch size used in training SwinIR. ' | |
'Just used to differentiate two different settings in Table 2 of the paper. ' | |
'Images are NOT tested patch by patch.') | |
parser.add_argument('--large_model', action='store_true', | |
help='use large model, only provided for real image sr') | |
parser.add_argument('--model_path', type=str, | |
default=self.model_zoo['real_sr'][4]) | |
parser.add_argument('--folder_lq', type=str, default=None, help='input low-quality test image folder') | |
parser.add_argument('--folder_gt', type=str, default=None, help='input ground-truth test image folder') | |
self.args = parser.parse_args('') | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.tasks = { | |
'Real-World Image Super-Resolution': 'real_sr', | |
'Grayscale Image Denoising': 'gray_dn', | |
'Color Image Denoising': 'color_dn', | |
'JPEG Compression Artifact Reduction': 'jpeg_car' | |
} | |
def predict(self, image, task_type='Real-World Image Super-Resolution', jpeg=40, noise=15): | |
self.args.task = self.tasks[task_type] | |
self.args.noise = noise | |
self.args.jpeg = jpeg | |
# set model path | |
if self.args.task == 'real_sr': | |
self.args.scale = 4 | |
self.args.model_path = self.model_zoo[self.args.task][4] | |
elif self.args.task in ['gray_dn', 'color_dn']: | |
self.args.model_path = self.model_zoo[self.args.task][noise] | |
else: | |
self.args.model_path = self.model_zoo[self.args.task][jpeg] | |
# set input folder | |
input_dir = 'input_cog_temp' | |
os.makedirs(input_dir, exist_ok=True) | |
input_path = os.path.join(input_dir, os.path.basename(image)) | |
shutil.copy(str(image), input_path) | |
if self.args.task == 'real_sr': | |
self.args.folder_lq = input_dir | |
else: | |
self.args.folder_gt = input_dir | |
model = define_model(self.args) | |
model.eval() | |
model = model.to(self.device) | |
# setup folder and path | |
folder, save_dir, border, window_size = setup(self.args) | |
os.makedirs(save_dir, exist_ok=True) | |
test_results = OrderedDict() | |
test_results['psnr'] = [] | |
test_results['ssim'] = [] | |
test_results['psnr_y'] = [] | |
test_results['ssim_y'] = [] | |
test_results['psnr_b'] = [] | |
# psnr, ssim, psnr_y, ssim_y, psnr_b = 0, 0, 0, 0, 0 | |
out_path = Path(tempfile.mkdtemp()) / "out.png" | |
for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, '*')))): | |
# read image | |
imgname, img_lq, img_gt = get_image_pair(self.args, path) # image to HWC-BGR, float32 | |
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], | |
(2, 0, 1)) # HCW-BGR to CHW-RGB | |
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(self.device) # CHW-RGB to NCHW-RGB | |
# inference | |
with torch.no_grad(): | |
# pad input image to be a multiple of window_size | |
_, _, h_old, w_old = img_lq.size() | |
h_pad = (h_old // window_size + 1) * window_size - h_old | |
w_pad = (w_old // window_size + 1) * window_size - w_old | |
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :] | |
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad] | |
output = model(img_lq) | |
output = output[..., :h_old * self.args.scale, :w_old * self.args.scale] | |
# save image | |
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() | |
if output.ndim == 3: | |
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR | |
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 | |
cv2.imwrite(str(out_path), output) | |
clean_folder(input_dir) | |
return out_path | |
def clean_folder(folder): | |
for filename in os.listdir(folder): | |
file_path = os.path.join(folder, filename) | |
try: | |
if os.path.isfile(file_path) or os.path.islink(file_path): | |
os.unlink(file_path) | |
elif os.path.isdir(file_path): | |
shutil.rmtree(file_path) | |
except Exception as e: | |
print('Failed to delete %s. Reason: %s' % (file_path, e)) | |