File size: 1,672 Bytes
2591fef
 
 
 
 
 
 
 
 
 
 
 
 
 
89621bb
 
 
 
2591fef
89621bb
2591fef
 
 
89621bb
 
2591fef
 
 
 
 
 
89621bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import gradio as gr
from transformers import pipeline

pp_en = pipeline("question-answering",model="deepset/roberta-base-squad2")
pp_ch = pipeline("question-answering",model="luhua/chinese_pretrain_mrc_roberta_wwm_ext_large")

def qa_fn(ask,ctxt,model):
  pp = (pp_en if model=="deepset" else pp_ch);
  ret = pp(context=ctxt, question=ask);
  ret['entity']='Answer';
  return {"text":ctxt,"entities":[ret]}, ret['answer'], ret['score']     
  #注意HighlightedText的用法。有两种不同用法:https://gradio.app/named_entity_recognition/
  # 一种是list of dict ,一种是list of tuple. 详细用法参考https://gradio.app/named_entity_recognition/吧

samples= [
    ["乔治的哥哥叫什么名字?","我是小猪佩奇,我是乔治的哥哥,我家住在北京","deepset"],
    ["图书馆主页的网址是多少啊?","读者进入图书馆主页(http://lib.tjut.edu.cn)后,点击文献传递菜单,即可查看文献传递的具体流程步骤","mrc"],
        ];
introStr = "用于演示使用人工智能自动寻找问题答案,这将是一种更加高效便捷的新型信息检索方式。";
titleStr = "智能问答演示程序";

demo = gr.Interface(qa_fn, 
       inputs=[gr.Textbox(label="Question",placeholder='请输入问题'), 
               gr.Textbox(label="Contexkht",lines=10,placeholder="请输入一段文本"),
               gr.Radio(["deepset","mrc"],label="Select Model", value="deepset"),
               ],
       outputs=[gr.HighlightedText(label='答案位置'),gr.Textbox(label="答案"),gr.Number(label="Score")],
       examples=samples,
       description=introStr,
       title=titleStr);

demo.launch()