Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
|
6 |
+
def infer(im):
|
7 |
+
im.save('converted.png')
|
8 |
+
url = 'https://ajax.thehive.ai/api/demo/classify?endpoint=text_recognition'
|
9 |
+
files = {
|
10 |
+
'image': ('converted.png', open('converted.png', 'rb'), 'image/png'),
|
11 |
+
'model_type': (None, 'detection'),
|
12 |
+
'media_type': (None, 'photo'),
|
13 |
+
}
|
14 |
+
res = requests.post(url, files=files).json()
|
15 |
+
img = im.convert('RGB')
|
16 |
+
|
17 |
+
words = []
|
18 |
+
draw = ImageDraw.Draw(img,'RGBA')
|
19 |
+
for output in res['response']['output']:
|
20 |
+
for poly in output['bounding_poly']:
|
21 |
+
words += [c['class'] for c in poly['classes']]
|
22 |
+
draw.rectangle((poly['dimensions']['left']-2,poly['dimensions']['top']-2,poly['dimensions']['right']+2,poly['dimensions']['bottom']+2), outline=(0,255,0,255), fill=(0,255,0,50),width=2)
|
23 |
+
|
24 |
+
img.save('result.png')
|
25 |
+
return 'result.png', '\n'.join([o['block_text'] for o in res['response']['output']]), pd.DataFrame(words)
|
26 |
+
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=infer,
|
29 |
+
title="Hive OCR",
|
30 |
+
description="Demo for Hive OCR.Transcribe and analyze media depicting typed, written, or graphic text",
|
31 |
+
inputs=[gr.inputs.Image(label='image', type='pil')],
|
32 |
+
outputs=['image', 'text', gr.outputs.Dataframe(headers=['word'])],
|
33 |
+
examples=[],
|
34 |
+
article="<a href=\"https://thehive.ai/hive-ocr-solutions\">Hive OCR</a>",
|
35 |
+
).launch()
|