Spaces:
Runtime error
Runtime error
File size: 5,610 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
# for ctw1500
img_scale_train_ctw1500 = [(3000, 640)]
shrink_ratio_train_ctw1500 = (1.0, 0.7)
target_size_train_ctw1500 = (640, 640)
train_pipeline_ctw1500 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadTextAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(type='ColorJitter', brightness=32.0 / 255, saturation=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(
type='ScaleAspectJitter',
img_scale=img_scale_train_ctw1500,
ratio_range=(0.7, 1.3),
aspect_ratio_range=(0.9, 1.1),
multiscale_mode='value',
keep_ratio=False),
# shrink_ratio is from big to small. The 1st must be 1.0
dict(type='PANetTargets', shrink_ratio=shrink_ratio_train_ctw1500),
dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'),
dict(type='RandomRotateTextDet'),
dict(
type='RandomCropInstances',
target_size=target_size_train_ctw1500,
instance_key='gt_kernels'),
dict(type='Pad', size_divisor=32),
dict(
type='CustomFormatBundle',
keys=['gt_kernels', 'gt_mask'],
visualize=dict(flag=False, boundary_key='gt_kernels')),
dict(type='Collect', keys=['img', 'gt_kernels', 'gt_mask'])
]
img_scale_test_ctw1500 = (3000, 640)
test_pipeline_ctw1500 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='MultiScaleFlipAug',
img_scale=img_scale_test_ctw1500,
flip=False,
transforms=[
dict(type='Resize', img_scale=(3000, 640), keep_ratio=True),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
# for icdar2015
img_scale_train_icdar2015 = [(3000, 736)]
shrink_ratio_train_icdar2015 = (1.0, 0.5)
target_size_train_icdar2015 = (736, 736)
train_pipeline_icdar2015 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadTextAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(type='ColorJitter', brightness=32.0 / 255, saturation=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(
type='ScaleAspectJitter',
img_scale=img_scale_train_icdar2015,
ratio_range=(0.7, 1.3),
aspect_ratio_range=(0.9, 1.1),
multiscale_mode='value',
keep_ratio=False),
dict(type='PANetTargets', shrink_ratio=shrink_ratio_train_icdar2015),
dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'),
dict(type='RandomRotateTextDet'),
dict(
type='RandomCropInstances',
target_size=target_size_train_icdar2015,
instance_key='gt_kernels'),
dict(type='Pad', size_divisor=32),
dict(
type='CustomFormatBundle',
keys=['gt_kernels', 'gt_mask'],
visualize=dict(flag=False, boundary_key='gt_kernels')),
dict(type='Collect', keys=['img', 'gt_kernels', 'gt_mask'])
]
img_scale_test_icdar2015 = (1333, 736)
test_pipeline_icdar2015 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='MultiScaleFlipAug',
img_scale=img_scale_test_icdar2015,
flip=False,
transforms=[
dict(type='Resize', img_scale=(3000, 640), keep_ratio=True),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
# for icdar2017
img_scale_train_icdar2017 = [(3000, 800)]
shrink_ratio_train_icdar2017 = (1.0, 0.5)
target_size_train_icdar2017 = (800, 800)
train_pipeline_icdar2017 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadTextAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(type='ColorJitter', brightness=32.0 / 255, saturation=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(
type='ScaleAspectJitter',
img_scale=img_scale_train_icdar2017,
ratio_range=(0.7, 1.3),
aspect_ratio_range=(0.9, 1.1),
multiscale_mode='value',
keep_ratio=False),
dict(type='PANetTargets', shrink_ratio=shrink_ratio_train_icdar2017),
dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'),
dict(type='RandomRotateTextDet'),
dict(
type='RandomCropInstances',
target_size=target_size_train_icdar2017,
instance_key='gt_kernels'),
dict(type='Pad', size_divisor=32),
dict(
type='CustomFormatBundle',
keys=['gt_kernels', 'gt_mask'],
visualize=dict(flag=False, boundary_key='gt_kernels')),
dict(type='Collect', keys=['img', 'gt_kernels', 'gt_mask'])
]
img_scale_test_icdar2017 = (1333, 800)
test_pipeline_icdar2017 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='MultiScaleFlipAug',
img_scale=img_scale_test_icdar2017,
flip=False,
transforms=[
dict(type='Resize', img_scale=(3000, 640), keep_ratio=True),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
|