File size: 1,556 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
_base_ = [
    '../../_base_/default_runtime.py',
    '../../_base_/schedules/schedule_adam_step_5e.py',
    '../../_base_/recog_pipelines/sar_pipeline.py',
    '../../_base_/recog_datasets/ST_SA_MJ_real_train.py',
    '../../_base_/recog_datasets/academic_test.py'
]

train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}

train_pipeline = {{_base_.train_pipeline}}
test_pipeline = {{_base_.test_pipeline}}

label_convertor = dict(
    type='AttnConvertor', dict_type='DICT90', with_unknown=True)

model = dict(
    type='SARNet',
    backbone=dict(type='ResNet31OCR'),
    encoder=dict(
        type='SAREncoder',
        enc_bi_rnn=False,
        enc_do_rnn=0.1,
        enc_gru=False,
    ),
    decoder=dict(
        type='SequentialSARDecoder',
        enc_bi_rnn=False,
        dec_bi_rnn=False,
        dec_do_rnn=0,
        dec_gru=False,
        pred_dropout=0.1,
        d_k=512,
        pred_concat=True),
    loss=dict(type='SARLoss'),
    label_convertor=label_convertor,
    max_seq_len=30)

data = dict(
    samples_per_gpu=64,
    workers_per_gpu=2,
    val_dataloader=dict(samples_per_gpu=1),
    test_dataloader=dict(samples_per_gpu=1),
    train=dict(
        type='UniformConcatDataset',
        datasets=train_list,
        pipeline=train_pipeline),
    val=dict(
        type='UniformConcatDataset',
        datasets=test_list,
        pipeline=test_pipeline),
    test=dict(
        type='UniformConcatDataset',
        datasets=test_list,
        pipeline=test_pipeline))

evaluation = dict(interval=1, metric='acc')