Spaces:
Runtime error
Runtime error
File size: 37,543 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import cv2
import mmcv
import numpy as np
import torchvision.transforms as transforms
from mmdet.core import BitmapMasks, PolygonMasks
from mmdet.datasets.builder import PIPELINES
from mmdet.datasets.pipelines.transforms import Resize
from PIL import Image
from shapely.geometry import Polygon as plg
import mmocr.core.evaluation.utils as eval_utils
from mmocr.utils import check_argument
@PIPELINES.register_module()
class RandomCropInstances:
"""Randomly crop images and make sure to contain text instances.
Args:
target_size (tuple or int): (height, width)
positive_sample_ratio (float): The probability of sampling regions
that go through positive regions.
"""
def __init__(
self,
target_size,
instance_key,
mask_type='inx0', # 'inx0' or 'union_all'
positive_sample_ratio=5.0 / 8.0):
assert mask_type in ['inx0', 'union_all']
self.mask_type = mask_type
self.instance_key = instance_key
self.positive_sample_ratio = positive_sample_ratio
self.target_size = target_size if (target_size is None or isinstance(
target_size, tuple)) else (target_size, target_size)
def sample_offset(self, img_gt, img_size):
h, w = img_size
t_h, t_w = self.target_size
# target size is bigger than origin size
t_h = t_h if t_h < h else h
t_w = t_w if t_w < w else w
if (img_gt is not None
and np.random.random_sample() < self.positive_sample_ratio
and np.max(img_gt) > 0):
# make sure to crop the positive region
# the minimum top left to crop positive region (h,w)
tl = np.min(np.where(img_gt > 0), axis=1) - (t_h, t_w)
tl[tl < 0] = 0
# the maximum top left to crop positive region
br = np.max(np.where(img_gt > 0), axis=1) - (t_h, t_w)
br[br < 0] = 0
# if br is too big so that crop the outside region of img
br[0] = min(br[0], h - t_h)
br[1] = min(br[1], w - t_w)
#
h = np.random.randint(tl[0], br[0]) if tl[0] < br[0] else 0
w = np.random.randint(tl[1], br[1]) if tl[1] < br[1] else 0
else:
# make sure not to crop outside of img
h = np.random.randint(0, h - t_h) if h - t_h > 0 else 0
w = np.random.randint(0, w - t_w) if w - t_w > 0 else 0
return (h, w)
@staticmethod
def crop_img(img, offset, target_size):
h, w = img.shape[:2]
br = np.min(
np.stack((np.array(offset) + np.array(target_size), np.array(
(h, w)))),
axis=0)
return img[offset[0]:br[0], offset[1]:br[1]], np.array(
[offset[1], offset[0], br[1], br[0]])
def crop_bboxes(self, bboxes, canvas_bbox):
kept_bboxes = []
kept_inx = []
canvas_poly = eval_utils.box2polygon(canvas_bbox)
tl = canvas_bbox[0:2]
for idx, bbox in enumerate(bboxes):
poly = eval_utils.box2polygon(bbox)
area, inters = eval_utils.poly_intersection(
poly, canvas_poly, return_poly=True)
if area == 0:
continue
xmin, ymin, xmax, ymax = inters.bounds
kept_bboxes += [
np.array(
[xmin - tl[0], ymin - tl[1], xmax - tl[0], ymax - tl[1]],
dtype=np.float32)
]
kept_inx += [idx]
if len(kept_inx) == 0:
return np.array([]).astype(np.float32).reshape(0, 4), kept_inx
return np.stack(kept_bboxes), kept_inx
@staticmethod
def generate_mask(gt_mask, type):
if type == 'inx0':
return gt_mask.masks[0]
if type == 'union_all':
mask = gt_mask.masks[0].copy()
for idx in range(1, len(gt_mask.masks)):
mask = np.logical_or(mask, gt_mask.masks[idx])
return mask
raise NotImplementedError
def __call__(self, results):
gt_mask = results[self.instance_key]
mask = None
if len(gt_mask.masks) > 0:
mask = self.generate_mask(gt_mask, self.mask_type)
results['crop_offset'] = self.sample_offset(mask,
results['img'].shape[:2])
# crop img. bbox = [x1,y1,x2,y2]
img, bbox = self.crop_img(results['img'], results['crop_offset'],
self.target_size)
results['img'] = img
img_shape = img.shape
results['img_shape'] = img_shape
# crop masks
for key in results.get('mask_fields', []):
results[key] = results[key].crop(bbox)
# for mask rcnn
for key in results.get('bbox_fields', []):
results[key], kept_inx = self.crop_bboxes(results[key], bbox)
if key == 'gt_bboxes':
# ignore gt_labels accordingly
if 'gt_labels' in results:
ori_labels = results['gt_labels']
ori_inst_num = len(ori_labels)
results['gt_labels'] = [
ori_labels[idx] for idx in range(ori_inst_num)
if idx in kept_inx
]
# ignore g_masks accordingly
if 'gt_masks' in results:
ori_mask = results['gt_masks'].masks
kept_mask = [
ori_mask[idx] for idx in range(ori_inst_num)
if idx in kept_inx
]
target_h, target_w = bbox[3] - bbox[1], bbox[2] - bbox[0]
if len(kept_inx) > 0:
kept_mask = np.stack(kept_mask)
else:
kept_mask = np.empty((0, target_h, target_w),
dtype=np.float32)
results['gt_masks'] = BitmapMasks(kept_mask, target_h,
target_w)
return results
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str
@PIPELINES.register_module()
class RandomRotateTextDet:
"""Randomly rotate images."""
def __init__(self, rotate_ratio=1.0, max_angle=10):
self.rotate_ratio = rotate_ratio
self.max_angle = max_angle
@staticmethod
def sample_angle(max_angle):
angle = np.random.random_sample() * 2 * max_angle - max_angle
return angle
@staticmethod
def rotate_img(img, angle):
h, w = img.shape[:2]
rotation_matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1)
img_target = cv2.warpAffine(
img, rotation_matrix, (w, h), flags=cv2.INTER_NEAREST)
assert img_target.shape == img.shape
return img_target
def __call__(self, results):
if np.random.random_sample() < self.rotate_ratio:
# rotate imgs
results['rotated_angle'] = self.sample_angle(self.max_angle)
img = self.rotate_img(results['img'], results['rotated_angle'])
results['img'] = img
img_shape = img.shape
results['img_shape'] = img_shape
# rotate masks
for key in results.get('mask_fields', []):
masks = results[key].masks
mask_list = []
for m in masks:
rotated_m = self.rotate_img(m, results['rotated_angle'])
mask_list.append(rotated_m)
results[key] = BitmapMasks(mask_list, *(img_shape[:2]))
return results
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str
@PIPELINES.register_module()
class ColorJitter:
"""An interface for torch color jitter so that it can be invoked in
mmdetection pipeline."""
def __init__(self, **kwargs):
self.transform = transforms.ColorJitter(**kwargs)
def __call__(self, results):
# img is bgr
img = results['img'][..., ::-1]
img = Image.fromarray(img)
img = self.transform(img)
img = np.asarray(img)
img = img[..., ::-1]
results['img'] = img
return results
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str
@PIPELINES.register_module()
class ScaleAspectJitter(Resize):
"""Resize image and segmentation mask encoded by coordinates.
Allowed resize types are `around_min_img_scale`, `long_short_bound`, and
`indep_sample_in_range`.
"""
def __init__(self,
img_scale=None,
multiscale_mode='range',
ratio_range=None,
keep_ratio=False,
resize_type='around_min_img_scale',
aspect_ratio_range=None,
long_size_bound=None,
short_size_bound=None,
scale_range=None):
super().__init__(
img_scale=img_scale,
multiscale_mode=multiscale_mode,
ratio_range=ratio_range,
keep_ratio=keep_ratio)
assert not keep_ratio
assert resize_type in [
'around_min_img_scale', 'long_short_bound', 'indep_sample_in_range'
]
self.resize_type = resize_type
if resize_type == 'indep_sample_in_range':
assert ratio_range is None
assert aspect_ratio_range is None
assert short_size_bound is None
assert long_size_bound is None
assert scale_range is not None
else:
assert scale_range is None
assert isinstance(ratio_range, tuple)
assert isinstance(aspect_ratio_range, tuple)
assert check_argument.equal_len(ratio_range, aspect_ratio_range)
if resize_type in ['long_short_bound']:
assert short_size_bound is not None
assert long_size_bound is not None
self.aspect_ratio_range = aspect_ratio_range
self.long_size_bound = long_size_bound
self.short_size_bound = short_size_bound
self.scale_range = scale_range
@staticmethod
def sample_from_range(range):
assert len(range) == 2
min_value, max_value = min(range), max(range)
value = np.random.random_sample() * (max_value - min_value) + min_value
return value
def _random_scale(self, results):
if self.resize_type == 'indep_sample_in_range':
w = self.sample_from_range(self.scale_range)
h = self.sample_from_range(self.scale_range)
results['scale'] = (int(w), int(h)) # (w,h)
results['scale_idx'] = None
return
h, w = results['img'].shape[0:2]
if self.resize_type == 'long_short_bound':
scale1 = 1
if max(h, w) > self.long_size_bound:
scale1 = self.long_size_bound / max(h, w)
scale2 = self.sample_from_range(self.ratio_range)
scale = scale1 * scale2
if min(h, w) * scale <= self.short_size_bound:
scale = (self.short_size_bound + 10) * 1.0 / min(h, w)
elif self.resize_type == 'around_min_img_scale':
short_size = min(self.img_scale[0])
ratio = self.sample_from_range(self.ratio_range)
scale = (ratio * short_size) / min(h, w)
else:
raise NotImplementedError
aspect = self.sample_from_range(self.aspect_ratio_range)
h_scale = scale * math.sqrt(aspect)
w_scale = scale / math.sqrt(aspect)
results['scale'] = (int(w * w_scale), int(h * h_scale)) # (w,h)
results['scale_idx'] = None
@PIPELINES.register_module()
class AffineJitter:
"""An interface for torchvision random affine so that it can be invoked in
mmdet pipeline."""
def __init__(self,
degrees=4,
translate=(0.02, 0.04),
scale=(0.9, 1.1),
shear=None,
resample=False,
fillcolor=0):
self.transform = transforms.RandomAffine(
degrees=degrees,
translate=translate,
scale=scale,
shear=shear,
resample=resample,
fillcolor=fillcolor)
def __call__(self, results):
# img is bgr
img = results['img'][..., ::-1]
img = Image.fromarray(img)
img = self.transform(img)
img = np.asarray(img)
img = img[..., ::-1]
results['img'] = img
return results
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str
@PIPELINES.register_module()
class RandomCropPolyInstances:
"""Randomly crop images and make sure to contain at least one intact
instance."""
def __init__(self,
instance_key='gt_masks',
crop_ratio=5.0 / 8.0,
min_side_ratio=0.4):
super().__init__()
self.instance_key = instance_key
self.crop_ratio = crop_ratio
self.min_side_ratio = min_side_ratio
def sample_valid_start_end(self, valid_array, min_len, max_start, min_end):
assert isinstance(min_len, int)
assert len(valid_array) > min_len
start_array = valid_array.copy()
max_start = min(len(start_array) - min_len, max_start)
start_array[max_start:] = 0
start_array[0] = 1
diff_array = np.hstack([0, start_array]) - np.hstack([start_array, 0])
region_starts = np.where(diff_array < 0)[0]
region_ends = np.where(diff_array > 0)[0]
region_ind = np.random.randint(0, len(region_starts))
start = np.random.randint(region_starts[region_ind],
region_ends[region_ind])
end_array = valid_array.copy()
min_end = max(start + min_len, min_end)
end_array[:min_end] = 0
end_array[-1] = 1
diff_array = np.hstack([0, end_array]) - np.hstack([end_array, 0])
region_starts = np.where(diff_array < 0)[0]
region_ends = np.where(diff_array > 0)[0]
region_ind = np.random.randint(0, len(region_starts))
end = np.random.randint(region_starts[region_ind],
region_ends[region_ind])
return start, end
def sample_crop_box(self, img_size, results):
"""Generate crop box and make sure not to crop the polygon instances.
Args:
img_size (tuple(int)): The image size (h, w).
results (dict): The results dict.
"""
assert isinstance(img_size, tuple)
h, w = img_size[:2]
key_masks = results[self.instance_key].masks
x_valid_array = np.ones(w, dtype=np.int32)
y_valid_array = np.ones(h, dtype=np.int32)
selected_mask = key_masks[np.random.randint(0, len(key_masks))]
selected_mask = selected_mask[0].reshape((-1, 2)).astype(np.int32)
max_x_start = max(np.min(selected_mask[:, 0]) - 2, 0)
min_x_end = min(np.max(selected_mask[:, 0]) + 3, w - 1)
max_y_start = max(np.min(selected_mask[:, 1]) - 2, 0)
min_y_end = min(np.max(selected_mask[:, 1]) + 3, h - 1)
for key in results.get('mask_fields', []):
if len(results[key].masks) == 0:
continue
masks = results[key].masks
for mask in masks:
assert len(mask) == 1
mask = mask[0].reshape((-1, 2)).astype(np.int32)
clip_x = np.clip(mask[:, 0], 0, w - 1)
clip_y = np.clip(mask[:, 1], 0, h - 1)
min_x, max_x = np.min(clip_x), np.max(clip_x)
min_y, max_y = np.min(clip_y), np.max(clip_y)
x_valid_array[min_x - 2:max_x + 3] = 0
y_valid_array[min_y - 2:max_y + 3] = 0
min_w = int(w * self.min_side_ratio)
min_h = int(h * self.min_side_ratio)
x1, x2 = self.sample_valid_start_end(x_valid_array, min_w, max_x_start,
min_x_end)
y1, y2 = self.sample_valid_start_end(y_valid_array, min_h, max_y_start,
min_y_end)
return np.array([x1, y1, x2, y2])
def crop_img(self, img, bbox):
assert img.ndim == 3
h, w, _ = img.shape
assert 0 <= bbox[1] < bbox[3] <= h
assert 0 <= bbox[0] < bbox[2] <= w
return img[bbox[1]:bbox[3], bbox[0]:bbox[2]]
def __call__(self, results):
if len(results[self.instance_key].masks) < 1:
return results
if np.random.random_sample() < self.crop_ratio:
crop_box = self.sample_crop_box(results['img'].shape, results)
results['crop_region'] = crop_box
img = self.crop_img(results['img'], crop_box)
results['img'] = img
results['img_shape'] = img.shape
# crop and filter masks
x1, y1, x2, y2 = crop_box
w = max(x2 - x1, 1)
h = max(y2 - y1, 1)
labels = results['gt_labels']
valid_labels = []
for key in results.get('mask_fields', []):
if len(results[key].masks) == 0:
continue
results[key] = results[key].crop(crop_box)
# filter out polygons beyond crop box.
masks = results[key].masks
valid_masks_list = []
for ind, mask in enumerate(masks):
assert len(mask) == 1
polygon = mask[0].reshape((-1, 2))
if (polygon[:, 0] >
-4).all() and (polygon[:, 0] < w + 4).all() and (
polygon[:, 1] > -4).all() and (polygon[:, 1] <
h + 4).all():
mask[0][::2] = np.clip(mask[0][::2], 0, w)
mask[0][1::2] = np.clip(mask[0][1::2], 0, h)
if key == self.instance_key:
valid_labels.append(labels[ind])
valid_masks_list.append(mask)
results[key] = PolygonMasks(valid_masks_list, h, w)
results['gt_labels'] = np.array(valid_labels)
return results
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str
@PIPELINES.register_module()
class RandomRotatePolyInstances:
def __init__(self,
rotate_ratio=0.5,
max_angle=10,
pad_with_fixed_color=False,
pad_value=(0, 0, 0)):
"""Randomly rotate images and polygon masks.
Args:
rotate_ratio (float): The ratio of samples to operate rotation.
max_angle (int): The maximum rotation angle.
pad_with_fixed_color (bool): The flag for whether to pad rotated
image with fixed value. If set to False, the rotated image will
be padded onto cropped image.
pad_value (tuple(int)): The color value for padding rotated image.
"""
self.rotate_ratio = rotate_ratio
self.max_angle = max_angle
self.pad_with_fixed_color = pad_with_fixed_color
self.pad_value = pad_value
def rotate(self, center, points, theta, center_shift=(0, 0)):
# rotate points.
(center_x, center_y) = center
center_y = -center_y
x, y = points[::2], points[1::2]
y = -y
theta = theta / 180 * math.pi
cos = math.cos(theta)
sin = math.sin(theta)
x = (x - center_x)
y = (y - center_y)
_x = center_x + x * cos - y * sin + center_shift[0]
_y = -(center_y + x * sin + y * cos) + center_shift[1]
points[::2], points[1::2] = _x, _y
return points
def cal_canvas_size(self, ori_size, degree):
assert isinstance(ori_size, tuple)
angle = degree * math.pi / 180.0
h, w = ori_size[:2]
cos = math.cos(angle)
sin = math.sin(angle)
canvas_h = int(w * math.fabs(sin) + h * math.fabs(cos))
canvas_w = int(w * math.fabs(cos) + h * math.fabs(sin))
canvas_size = (canvas_h, canvas_w)
return canvas_size
def sample_angle(self, max_angle):
angle = np.random.random_sample() * 2 * max_angle - max_angle
return angle
def rotate_img(self, img, angle, canvas_size):
h, w = img.shape[:2]
rotation_matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1)
rotation_matrix[0, 2] += int((canvas_size[1] - w) / 2)
rotation_matrix[1, 2] += int((canvas_size[0] - h) / 2)
if self.pad_with_fixed_color:
target_img = cv2.warpAffine(
img,
rotation_matrix, (canvas_size[1], canvas_size[0]),
flags=cv2.INTER_NEAREST,
borderValue=self.pad_value)
else:
mask = np.zeros_like(img)
(h_ind, w_ind) = (np.random.randint(0, h * 7 // 8),
np.random.randint(0, w * 7 // 8))
img_cut = img[h_ind:(h_ind + h // 9), w_ind:(w_ind + w // 9)]
img_cut = mmcv.imresize(img_cut, (canvas_size[1], canvas_size[0]))
mask = cv2.warpAffine(
mask,
rotation_matrix, (canvas_size[1], canvas_size[0]),
borderValue=[1, 1, 1])
target_img = cv2.warpAffine(
img,
rotation_matrix, (canvas_size[1], canvas_size[0]),
borderValue=[0, 0, 0])
target_img = target_img + img_cut * mask
return target_img
def __call__(self, results):
if np.random.random_sample() < self.rotate_ratio:
img = results['img']
h, w = img.shape[:2]
angle = self.sample_angle(self.max_angle)
canvas_size = self.cal_canvas_size((h, w), angle)
center_shift = (int(
(canvas_size[1] - w) / 2), int((canvas_size[0] - h) / 2))
# rotate image
results['rotated_poly_angle'] = angle
img = self.rotate_img(img, angle, canvas_size)
results['img'] = img
img_shape = img.shape
results['img_shape'] = img_shape
# rotate polygons
for key in results.get('mask_fields', []):
if len(results[key].masks) == 0:
continue
masks = results[key].masks
rotated_masks = []
for mask in masks:
rotated_mask = self.rotate((w / 2, h / 2), mask[0], angle,
center_shift)
rotated_masks.append([rotated_mask])
results[key] = PolygonMasks(rotated_masks, *(img_shape[:2]))
return results
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str
@PIPELINES.register_module()
class SquareResizePad:
def __init__(self,
target_size,
pad_ratio=0.6,
pad_with_fixed_color=False,
pad_value=(0, 0, 0)):
"""Resize or pad images to be square shape.
Args:
target_size (int): The target size of square shaped image.
pad_with_fixed_color (bool): The flag for whether to pad rotated
image with fixed value. If set to False, the rescales image will
be padded onto cropped image.
pad_value (tuple(int)): The color value for padding rotated image.
"""
assert isinstance(target_size, int)
assert isinstance(pad_ratio, float)
assert isinstance(pad_with_fixed_color, bool)
assert isinstance(pad_value, tuple)
self.target_size = target_size
self.pad_ratio = pad_ratio
self.pad_with_fixed_color = pad_with_fixed_color
self.pad_value = pad_value
def resize_img(self, img, keep_ratio=True):
h, w, _ = img.shape
if keep_ratio:
t_h = self.target_size if h >= w else int(h * self.target_size / w)
t_w = self.target_size if h <= w else int(w * self.target_size / h)
else:
t_h = t_w = self.target_size
img = mmcv.imresize(img, (t_w, t_h))
return img, (t_h, t_w)
def square_pad(self, img):
h, w = img.shape[:2]
if h == w:
return img, (0, 0)
pad_size = max(h, w)
if self.pad_with_fixed_color:
expand_img = np.ones((pad_size, pad_size, 3), dtype=np.uint8)
expand_img[:] = self.pad_value
else:
(h_ind, w_ind) = (np.random.randint(0, h * 7 // 8),
np.random.randint(0, w * 7 // 8))
img_cut = img[h_ind:(h_ind + h // 9), w_ind:(w_ind + w // 9)]
expand_img = mmcv.imresize(img_cut, (pad_size, pad_size))
if h > w:
y0, x0 = 0, (h - w) // 2
else:
y0, x0 = (w - h) // 2, 0
expand_img[y0:y0 + h, x0:x0 + w] = img
offset = (x0, y0)
return expand_img, offset
def square_pad_mask(self, points, offset):
x0, y0 = offset
pad_points = points.copy()
pad_points[::2] = pad_points[::2] + x0
pad_points[1::2] = pad_points[1::2] + y0
return pad_points
def __call__(self, results):
img = results['img']
if np.random.random_sample() < self.pad_ratio:
img, out_size = self.resize_img(img, keep_ratio=True)
img, offset = self.square_pad(img)
else:
img, out_size = self.resize_img(img, keep_ratio=False)
offset = (0, 0)
results['img'] = img
results['img_shape'] = img.shape
for key in results.get('mask_fields', []):
if len(results[key].masks) == 0:
continue
results[key] = results[key].resize(out_size)
masks = results[key].masks
processed_masks = []
for mask in masks:
square_pad_mask = self.square_pad_mask(mask[0], offset)
processed_masks.append([square_pad_mask])
results[key] = PolygonMasks(processed_masks, *(img.shape[:2]))
return results
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str
@PIPELINES.register_module()
class RandomScaling:
def __init__(self, size=800, scale=(3. / 4, 5. / 2)):
"""Random scale the image while keeping aspect.
Args:
size (int) : Base size before scaling.
scale (tuple(float)) : The range of scaling.
"""
assert isinstance(size, int)
assert isinstance(scale, float) or isinstance(scale, tuple)
self.size = size
self.scale = scale if isinstance(scale, tuple) \
else (1 - scale, 1 + scale)
def __call__(self, results):
image = results['img']
h, w, _ = results['img_shape']
aspect_ratio = np.random.uniform(min(self.scale), max(self.scale))
scales = self.size * 1.0 / max(h, w) * aspect_ratio
scales = np.array([scales, scales])
out_size = (int(h * scales[1]), int(w * scales[0]))
image = mmcv.imresize(image, out_size[::-1])
results['img'] = image
results['img_shape'] = image.shape
for key in results.get('mask_fields', []):
if len(results[key].masks) == 0:
continue
results[key] = results[key].resize(out_size)
return results
@PIPELINES.register_module()
class RandomCropFlip:
def __init__(self,
pad_ratio=0.1,
crop_ratio=0.5,
iter_num=1,
min_area_ratio=0.2):
"""Random crop and flip a patch of the image.
Args:
crop_ratio (float): The ratio of cropping.
iter_num (int): Number of operations.
min_area_ratio (float): Minimal area ratio between cropped patch
and original image.
"""
assert isinstance(crop_ratio, float)
assert isinstance(iter_num, int)
assert isinstance(min_area_ratio, float)
self.pad_ratio = pad_ratio
self.epsilon = 1e-2
self.crop_ratio = crop_ratio
self.iter_num = iter_num
self.min_area_ratio = min_area_ratio
def __call__(self, results):
for i in range(self.iter_num):
results = self.random_crop_flip(results)
return results
def random_crop_flip(self, results):
image = results['img']
polygons = results['gt_masks'].masks
ignore_polygons = results['gt_masks_ignore'].masks
all_polygons = polygons + ignore_polygons
if len(polygons) == 0:
return results
if np.random.random() >= self.crop_ratio:
return results
h, w, _ = results['img_shape']
area = h * w
pad_h = int(h * self.pad_ratio)
pad_w = int(w * self.pad_ratio)
h_axis, w_axis = self.generate_crop_target(image, all_polygons, pad_h,
pad_w)
if len(h_axis) == 0 or len(w_axis) == 0:
return results
attempt = 0
while attempt < 10:
attempt += 1
polys_keep = []
polys_new = []
ign_polys_keep = []
ign_polys_new = []
xx = np.random.choice(w_axis, size=2)
xmin = np.min(xx) - pad_w
xmax = np.max(xx) - pad_w
xmin = np.clip(xmin, 0, w - 1)
xmax = np.clip(xmax, 0, w - 1)
yy = np.random.choice(h_axis, size=2)
ymin = np.min(yy) - pad_h
ymax = np.max(yy) - pad_h
ymin = np.clip(ymin, 0, h - 1)
ymax = np.clip(ymax, 0, h - 1)
if (xmax - xmin) * (ymax - ymin) < area * self.min_area_ratio:
# area too small
continue
pts = np.stack([[xmin, xmax, xmax, xmin],
[ymin, ymin, ymax, ymax]]).T.astype(np.int32)
pp = plg(pts)
fail_flag = False
for polygon in polygons:
ppi = plg(polygon[0].reshape(-1, 2))
ppiou = eval_utils.poly_intersection(ppi, pp)
if np.abs(ppiou - float(ppi.area)) > self.epsilon and \
np.abs(ppiou) > self.epsilon:
fail_flag = True
break
elif np.abs(ppiou - float(ppi.area)) < self.epsilon:
polys_new.append(polygon)
else:
polys_keep.append(polygon)
for polygon in ignore_polygons:
ppi = plg(polygon[0].reshape(-1, 2))
ppiou = eval_utils.poly_intersection(ppi, pp)
if np.abs(ppiou - float(ppi.area)) > self.epsilon and \
np.abs(ppiou) > self.epsilon:
fail_flag = True
break
elif np.abs(ppiou - float(ppi.area)) < self.epsilon:
ign_polys_new.append(polygon)
else:
ign_polys_keep.append(polygon)
if fail_flag:
continue
else:
break
cropped = image[ymin:ymax, xmin:xmax, :]
select_type = np.random.randint(3)
if select_type == 0:
img = np.ascontiguousarray(cropped[:, ::-1])
elif select_type == 1:
img = np.ascontiguousarray(cropped[::-1, :])
else:
img = np.ascontiguousarray(cropped[::-1, ::-1])
image[ymin:ymax, xmin:xmax, :] = img
results['img'] = image
if len(polys_new) + len(ign_polys_new) != 0:
height, width, _ = cropped.shape
if select_type == 0:
for idx, polygon in enumerate(polys_new):
poly = polygon[0].reshape(-1, 2)
poly[:, 0] = width - poly[:, 0] + 2 * xmin
polys_new[idx] = [poly.reshape(-1, )]
for idx, polygon in enumerate(ign_polys_new):
poly = polygon[0].reshape(-1, 2)
poly[:, 0] = width - poly[:, 0] + 2 * xmin
ign_polys_new[idx] = [poly.reshape(-1, )]
elif select_type == 1:
for idx, polygon in enumerate(polys_new):
poly = polygon[0].reshape(-1, 2)
poly[:, 1] = height - poly[:, 1] + 2 * ymin
polys_new[idx] = [poly.reshape(-1, )]
for idx, polygon in enumerate(ign_polys_new):
poly = polygon[0].reshape(-1, 2)
poly[:, 1] = height - poly[:, 1] + 2 * ymin
ign_polys_new[idx] = [poly.reshape(-1, )]
else:
for idx, polygon in enumerate(polys_new):
poly = polygon[0].reshape(-1, 2)
poly[:, 0] = width - poly[:, 0] + 2 * xmin
poly[:, 1] = height - poly[:, 1] + 2 * ymin
polys_new[idx] = [poly.reshape(-1, )]
for idx, polygon in enumerate(ign_polys_new):
poly = polygon[0].reshape(-1, 2)
poly[:, 0] = width - poly[:, 0] + 2 * xmin
poly[:, 1] = height - poly[:, 1] + 2 * ymin
ign_polys_new[idx] = [poly.reshape(-1, )]
polygons = polys_keep + polys_new
ignore_polygons = ign_polys_keep + ign_polys_new
results['gt_masks'] = PolygonMasks(polygons, *(image.shape[:2]))
results['gt_masks_ignore'] = PolygonMasks(ignore_polygons,
*(image.shape[:2]))
return results
def generate_crop_target(self, image, all_polys, pad_h, pad_w):
"""Generate crop target and make sure not to crop the polygon
instances.
Args:
image (ndarray): The image waited to be crop.
all_polys (list[list[ndarray]]): All polygons including ground
truth polygons and ground truth ignored polygons.
pad_h (int): Padding length of height.
pad_w (int): Padding length of width.
Returns:
h_axis (ndarray): Vertical cropping range.
w_axis (ndarray): Horizontal cropping range.
"""
h, w, _ = image.shape
h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
text_polys = []
for polygon in all_polys:
rect = cv2.minAreaRect(polygon[0].astype(np.int32).reshape(-1, 2))
box = cv2.boxPoints(rect)
box = np.int0(box)
text_polys.append([box[0], box[1], box[2], box[3]])
polys = np.array(text_polys, dtype=np.int32)
for poly in polys:
poly = np.round(poly, decimals=0).astype(np.int32)
minx = np.min(poly[:, 0])
maxx = np.max(poly[:, 0])
w_array[minx + pad_w:maxx + pad_w] = 1
miny = np.min(poly[:, 1])
maxy = np.max(poly[:, 1])
h_array[miny + pad_h:maxy + pad_h] = 1
h_axis = np.where(h_array == 0)[0]
w_axis = np.where(w_array == 0)[0]
return h_axis, w_axis
@PIPELINES.register_module()
class PyramidRescale:
"""Resize the image to the base shape, downsample it with gaussian pyramid,
and rescale it back to original size.
Adapted from https://github.com/FangShancheng/ABINet.
Args:
factor (int): The decay factor from base size, or the number of
downsampling operations from the base layer.
base_shape (tuple(int)): The shape of the base layer of the pyramid.
randomize_factor (bool): If True, the final factor would be a random
integer in [0, factor].
:Required Keys:
- | ``img`` (ndarray): The input image.
:Affected Keys:
:Modified:
- | ``img`` (ndarray): The modified image.
"""
def __init__(self, factor=4, base_shape=(128, 512), randomize_factor=True):
assert isinstance(factor, int)
assert isinstance(base_shape, list) or isinstance(base_shape, tuple)
assert len(base_shape) == 2
assert isinstance(randomize_factor, bool)
self.factor = factor if not randomize_factor else np.random.randint(
0, factor + 1)
self.base_w, self.base_h = base_shape
def __call__(self, results):
assert 'img' in results
if self.factor == 0:
return results
img = results['img']
src_h, src_w = img.shape[:2]
scale_img = mmcv.imresize(img, (self.base_w, self.base_h))
for _ in range(self.factor):
scale_img = cv2.pyrDown(scale_img)
scale_img = mmcv.imresize(scale_img, (src_w, src_h))
results['img'] = scale_img
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(factor={self.factor}, '
repr_str += f'basew={self.basew}, baseh={self.baseh})'
return repr_str
|