File size: 5,745 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import build_plugin_layer


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding."""
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=1,
        bias=False)


def conv1x1(in_planes, out_planes):
    """1x1 convolution with padding."""
    return nn.Conv2d(
        in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)


class BasicBlock(nn.Module):

    expansion = 1

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 use_conv1x1=False,
                 plugins=None):
        super(BasicBlock, self).__init__()

        if use_conv1x1:
            self.conv1 = conv1x1(inplanes, planes)
            self.conv2 = conv3x3(planes, planes * self.expansion, stride)
        else:
            self.conv1 = conv3x3(inplanes, planes, stride)
            self.conv2 = conv3x3(planes, planes * self.expansion)

        self.with_plugins = False
        if plugins:
            if isinstance(plugins, dict):
                plugins = [plugins]
            self.with_plugins = True
            # collect plugins for conv1/conv2/
            self.before_conv1_plugin = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'before_conv1'
            ]
            self.after_conv1_plugin = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv1'
            ]
            self.after_conv2_plugin = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv2'
            ]
            self.after_shortcut_plugin = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_shortcut'
            ]

        self.planes = planes
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.bn2 = nn.BatchNorm2d(planes * self.expansion)
        self.downsample = downsample
        self.stride = stride

        if self.with_plugins:
            self.before_conv1_plugin_names = self.make_block_plugins(
                inplanes, self.before_conv1_plugin)
            self.after_conv1_plugin_names = self.make_block_plugins(
                planes, self.after_conv1_plugin)
            self.after_conv2_plugin_names = self.make_block_plugins(
                planes, self.after_conv2_plugin)
            self.after_shortcut_plugin_names = self.make_block_plugins(
                planes, self.after_shortcut_plugin)

    def make_block_plugins(self, in_channels, plugins):
        """make plugins for block.

        Args:
            in_channels (int): Input channels of plugin.
            plugins (list[dict]): List of plugins cfg to build.

        Returns:
            list[str]: List of the names of plugin.
        """
        assert isinstance(plugins, list)
        plugin_names = []
        for plugin in plugins:
            plugin = plugin.copy()
            name, layer = build_plugin_layer(
                plugin,
                in_channels=in_channels,
                out_channels=in_channels,
                postfix=plugin.pop('postfix', ''))
            assert not hasattr(self, name), f'duplicate plugin {name}'
            self.add_module(name, layer)
            plugin_names.append(name)
        return plugin_names

    def forward_plugin(self, x, plugin_names):
        out = x
        for name in plugin_names:
            out = getattr(self, name)(x)
        return out

    def forward(self, x):
        if self.with_plugins:
            x = self.forward_plugin(x, self.before_conv1_plugin_names)
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        if self.with_plugins:
            out = self.forward_plugin(out, self.after_conv1_plugin_names)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.with_plugins:
            out = self.forward_plugin(out, self.after_conv2_plugin_names)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        if self.with_plugins:
            out = self.forward_plugin(out, self.after_shortcut_plugin_names)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=False):
        super().__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, 3, stride, 1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(
            planes, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        if downsample:
            self.downsample = nn.Sequential(
                nn.Conv2d(
                    inplanes, planes * self.expansion, 1, stride, bias=False),
                nn.BatchNorm2d(planes * self.expansion),
            )
        else:
            self.downsample = nn.Sequential()

    def forward(self, x):
        residual = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += residual
        out = self.relu(out)

        return out