Spaces:
Runtime error
Runtime error
File size: 11,877 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
# Modified from https://github.com/clovaai/deep-text-recognition-benchmark
#
# Licensed under the Apache License, Version 2.0 (the "License");s
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmocr.models.builder import PREPROCESSOR
from .base_preprocessor import BasePreprocessor
@PREPROCESSOR.register_module()
class TPSPreprocessor(BasePreprocessor):
"""Rectification Network of RARE, namely TPS based STN in
https://arxiv.org/pdf/1603.03915.pdf.
Args:
num_fiducial (int): Number of fiducial points of TPS-STN.
img_size (tuple(int, int)): Size :math:`(H, W)` of the input image.
rectified_img_size (tuple(int, int)): Size :math:`(H_r, W_r)` of
the rectified image.
num_img_channel (int): Number of channels of the input image.
init_cfg (dict or list[dict], optional): Initialization configs.
"""
def __init__(self,
num_fiducial=20,
img_size=(32, 100),
rectified_img_size=(32, 100),
num_img_channel=1,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
assert isinstance(num_fiducial, int)
assert num_fiducial > 0
assert isinstance(img_size, tuple)
assert isinstance(rectified_img_size, tuple)
assert isinstance(num_img_channel, int)
self.num_fiducial = num_fiducial
self.img_size = img_size
self.rectified_img_size = rectified_img_size
self.num_img_channel = num_img_channel
self.LocalizationNetwork = LocalizationNetwork(self.num_fiducial,
self.num_img_channel)
self.GridGenerator = GridGenerator(self.num_fiducial,
self.rectified_img_size)
def forward(self, batch_img):
"""
Args:
batch_img (Tensor): Images to be rectified with size
:math:`(N, C, H, W)`.
Returns:
Tensor: Rectified image with size :math:`(N, C, H_r, W_r)`.
"""
batch_C_prime = self.LocalizationNetwork(
batch_img) # batch_size x K x 2
build_P_prime = self.GridGenerator.build_P_prime(
batch_C_prime, batch_img.device
) # batch_size x n (= rectified_img_width x rectified_img_height) x 2
build_P_prime_reshape = build_P_prime.reshape([
build_P_prime.size(0), self.rectified_img_size[0],
self.rectified_img_size[1], 2
])
batch_rectified_img = F.grid_sample(
batch_img,
build_P_prime_reshape,
padding_mode='border',
align_corners=True)
return batch_rectified_img
class LocalizationNetwork(nn.Module):
"""Localization Network of RARE, which predicts C' (K x 2) from input
(img_width x img_height)
Args:
num_fiducial (int): Number of fiducial points of TPS-STN.
num_img_channel (int): Number of channels of the input image.
"""
def __init__(self, num_fiducial, num_img_channel):
super().__init__()
self.num_fiducial = num_fiducial
self.num_img_channel = num_img_channel
self.conv = nn.Sequential(
nn.Conv2d(
in_channels=self.num_img_channel,
out_channels=64,
kernel_size=3,
stride=1,
padding=1,
bias=False),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.MaxPool2d(2, 2), # batch_size x 64 x img_height/2 x img_width/2
nn.Conv2d(64, 128, 3, 1, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.MaxPool2d(2, 2), # batch_size x 128 x img_h/4 x img_w/4
nn.Conv2d(128, 256, 3, 1, 1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.MaxPool2d(2, 2), # batch_size x 256 x img_h/8 x img_w/8
nn.Conv2d(256, 512, 3, 1, 1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.AdaptiveAvgPool2d(1) # batch_size x 512
)
self.localization_fc1 = nn.Sequential(
nn.Linear(512, 256), nn.ReLU(True))
self.localization_fc2 = nn.Linear(256, self.num_fiducial * 2)
# Init fc2 in LocalizationNetwork
self.localization_fc2.weight.data.fill_(0)
ctrl_pts_x = np.linspace(-1.0, 1.0, int(num_fiducial / 2))
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(num_fiducial / 2))
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(num_fiducial / 2))
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
self.localization_fc2.bias.data = torch.from_numpy(
initial_bias).float().view(-1)
def forward(self, batch_img):
"""
Args:
batch_img (Tensor): Batch input image of shape
:math:`(N, C, H, W)`.
Returns:
Tensor: Predicted coordinates of fiducial points for input batch.
The shape is :math:`(N, F, 2)` where :math:`F` is ``num_fiducial``.
"""
batch_size = batch_img.size(0)
features = self.conv(batch_img).view(batch_size, -1)
batch_C_prime = self.localization_fc2(
self.localization_fc1(features)).view(batch_size,
self.num_fiducial, 2)
return batch_C_prime
class GridGenerator(nn.Module):
"""Grid Generator of RARE, which produces P_prime by multiplying T with P.
Args:
num_fiducial (int): Number of fiducial points of TPS-STN.
rectified_img_size (tuple(int, int)):
Size :math:`(H_r, W_r)` of the rectified image.
"""
def __init__(self, num_fiducial, rectified_img_size):
"""Generate P_hat and inv_delta_C for later."""
super().__init__()
self.eps = 1e-6
self.rectified_img_height = rectified_img_size[0]
self.rectified_img_width = rectified_img_size[1]
self.num_fiducial = num_fiducial
self.C = self._build_C(self.num_fiducial) # num_fiducial x 2
self.P = self._build_P(self.rectified_img_width,
self.rectified_img_height)
# for multi-gpu, you need register buffer
self.register_buffer(
'inv_delta_C',
torch.tensor(self._build_inv_delta_C(
self.num_fiducial,
self.C)).float()) # num_fiducial+3 x num_fiducial+3
self.register_buffer('P_hat',
torch.tensor(
self._build_P_hat(
self.num_fiducial, self.C,
self.P)).float()) # n x num_fiducial+3
# for fine-tuning with different image width,
# you may use below instead of self.register_buffer
# self.inv_delta_C = torch.tensor(
# self._build_inv_delta_C(
# self.num_fiducial,
# self.C)).float().cuda() # num_fiducial+3 x num_fiducial+3
# self.P_hat = torch.tensor(
# self._build_P_hat(self.num_fiducial, self.C,
# self.P)).float().cuda() # n x num_fiducial+3
def _build_C(self, num_fiducial):
"""Return coordinates of fiducial points in rectified_img; C."""
ctrl_pts_x = np.linspace(-1.0, 1.0, int(num_fiducial / 2))
ctrl_pts_y_top = -1 * np.ones(int(num_fiducial / 2))
ctrl_pts_y_bottom = np.ones(int(num_fiducial / 2))
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
C = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
return C # num_fiducial x 2
def _build_inv_delta_C(self, num_fiducial, C):
"""Return inv_delta_C which is needed to calculate T."""
hat_C = np.zeros((num_fiducial, num_fiducial), dtype=float)
for i in range(0, num_fiducial):
for j in range(i, num_fiducial):
r = np.linalg.norm(C[i] - C[j])
hat_C[i, j] = r
hat_C[j, i] = r
np.fill_diagonal(hat_C, 1)
hat_C = (hat_C**2) * np.log(hat_C)
# print(C.shape, hat_C.shape)
delta_C = np.concatenate( # num_fiducial+3 x num_fiducial+3
[
np.concatenate([np.ones((num_fiducial, 1)), C, hat_C],
axis=1), # num_fiducial x num_fiducial+3
np.concatenate([np.zeros(
(2, 3)), np.transpose(C)], axis=1), # 2 x num_fiducial+3
np.concatenate([np.zeros(
(1, 3)), np.ones((1, num_fiducial))],
axis=1) # 1 x num_fiducial+3
],
axis=0)
inv_delta_C = np.linalg.inv(delta_C)
return inv_delta_C # num_fiducial+3 x num_fiducial+3
def _build_P(self, rectified_img_width, rectified_img_height):
rectified_img_grid_x = (
np.arange(-rectified_img_width, rectified_img_width, 2) +
1.0) / rectified_img_width # self.rectified_img_width
rectified_img_grid_y = (
np.arange(-rectified_img_height, rectified_img_height, 2) +
1.0) / rectified_img_height # self.rectified_img_height
P = np.stack( # self.rectified_img_w x self.rectified_img_h x 2
np.meshgrid(rectified_img_grid_x, rectified_img_grid_y),
axis=2)
return P.reshape([
-1, 2
]) # n (= self.rectified_img_width x self.rectified_img_height) x 2
def _build_P_hat(self, num_fiducial, C, P):
n = P.shape[
0] # n (= self.rectified_img_width x self.rectified_img_height)
P_tile = np.tile(np.expand_dims(P, axis=1),
(1, num_fiducial,
1)) # n x 2 -> n x 1 x 2 -> n x num_fiducial x 2
C_tile = np.expand_dims(C, axis=0) # 1 x num_fiducial x 2
P_diff = P_tile - C_tile # n x num_fiducial x 2
rbf_norm = np.linalg.norm(
P_diff, ord=2, axis=2, keepdims=False) # n x num_fiducial
rbf = np.multiply(np.square(rbf_norm),
np.log(rbf_norm + self.eps)) # n x num_fiducial
P_hat = np.concatenate([np.ones((n, 1)), P, rbf], axis=1)
return P_hat # n x num_fiducial+3
def build_P_prime(self, batch_C_prime, device='cuda'):
"""Generate Grid from batch_C_prime [batch_size x num_fiducial x 2]"""
batch_size = batch_C_prime.size(0)
batch_inv_delta_C = self.inv_delta_C.repeat(batch_size, 1, 1)
batch_P_hat = self.P_hat.repeat(batch_size, 1, 1)
batch_C_prime_with_zeros = torch.cat(
(batch_C_prime, torch.zeros(batch_size, 3, 2).float().to(device)),
dim=1) # batch_size x num_fiducial+3 x 2
batch_T = torch.bmm(
batch_inv_delta_C,
batch_C_prime_with_zeros) # batch_size x num_fiducial+3 x 2
batch_P_prime = torch.bmm(batch_P_hat, batch_T) # batch_size x n x 2
return batch_P_prime # batch_size x n x 2
|