File size: 19,594 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# 文字识别

## 概览

**文字识别任务的数据集应按如下目录配置:**

```text
├── mixture
│   ├── coco_text
│   │   ├── train_label.txt
│   │   ├── train_words
│   ├── icdar_2011
│   │   ├── training_label.txt
│   │   ├── Challenge1_Training_Task3_Images_GT
│   ├── icdar_2013
│   │   ├── train_label.txt
│   │   ├── test_label_1015.txt
│   │   ├── test_label_1095.txt
│   │   ├── Challenge2_Training_Task3_Images_GT
│   │   ├── Challenge2_Test_Task3_Images
│   ├── icdar_2015
│   │   ├── train_label.txt
│   │   ├── test_label.txt
│   │   ├── ch4_training_word_images_gt
│   │   ├── ch4_test_word_images_gt
│   ├── III5K
│   │   ├── train_label.txt
│   │   ├── test_label.txt
│   │   ├── train
│   │   ├── test
│   ├── ct80
│   │   ├── test_label.txt
│   │   ├── image
│   ├── svt
│   │   ├── test_label.txt
│   │   ├── image
│   ├── svtp
│   │   ├── test_label.txt
│   │   ├── image
│   ├── Syn90k
│   │   ├── shuffle_labels.txt
│   │   ├── label.txt
│   │   ├── label.lmdb
│   │   ├── mnt
│   ├── SynthText
│   │   ├── alphanumeric_labels.txt
│   │   ├── shuffle_labels.txt
│   │   ├── instances_train.txt
│   │   ├── label.txt
│   │   ├── label.lmdb
│   │   ├── synthtext
│   ├── SynthAdd
│   │   ├── label.txt
│   │   ├── label.lmdb
│   │   ├── SynthText_Add
│   ├── TextOCR
│   │   ├── image
│   │   ├── train_label.txt
│   │   ├── val_label.txt
│   ├── Totaltext
│   │   ├── imgs
│   │   ├── annotations
│   │   ├── train_label.txt
│   │   ├── test_label.txt
│   ├── OpenVINO
│   │   ├── image_1
│   │   ├── image_2
│   │   ├── image_5
│   │   ├── image_f
│   │   ├── image_val
│   │   ├── train_1_label.txt
│   │   ├── train_2_label.txt
│   │   ├── train_5_label.txt
│   │   ├── train_f_label.txt
│   │   ├── val_label.txt
```

|  数据集名称   |                                        数据图片                                         |                                                                                                                                            标注文件                                                                                                                                                 |                                             标注文件                                             |
| :--------: | :-----------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------: |
|       |                                                                                       |                                                                                                                                                训练集(training)                                                                                                                                               |                                                  测试集(test)                                                   |
| coco_text  |                [下载地址](https://rrc.cvc.uab.es/?ch=5&com=downloads)                 |                                                                                                     [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt)                                                                                                     |                                                    -                                                    |       |
| icdar_2011 | [下载地址](http://www.cvc.uab.es/icdar2011competition/?com=downloads)         |                                                                                                    [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt)                                                                                                     |                                                    -                                                    |       |
| icdar_2013 |              [下载地址](https://rrc.cvc.uab.es/?ch=2&com=downloads)                 |                                                                                                    [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt)                                                                                                     | [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) |       |
| icdar_2015 |               [下载地址](https://rrc.cvc.uab.es/?ch=4&com=downloads)                 |                                                                                                    [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt)                                                                                                     |      [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt)      |       |
|   IIIT5K   |    [下载地址](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html)     |                                                                                                      [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt)                                                                                                       |        [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt)        |       |
|    ct80    |                                            [下载地址](http://cs-chan.com/downloads_CUTE80_dataset.html)                                           |                                                                                                                                                   -                                                                                                                                                    |         [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt)         |       |
|    svt     |[下载地址](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) |                                                                                                                                                   -                                                                                                                                                    |         [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt)          |       |
|    svtp    |                              [非官方下载地址*](https://github.com/Jyouhou/Case-Sensitive-Scene-Text-Recognition-Datasets)                                           |                                                                                                                                                   -                                                                                                                                                    |         [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt)         |       |
|  MJSynth (Syn90k) |               [下载地址](https://www.robots.ox.ac.uk/~vgg/data/text/)                |                                                       [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/shuffle_labels.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/label.txt)                                                       |                                                    -                                                    |       |
| SynthText (Synth800k) |           [下载地址](https://www.robots.ox.ac.uk/~vgg/data/scenetext/)              |[alphanumeric_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/alphanumeric_labels.txt) \| [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) \| [instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/label.txt) |                                                    -                                                    |       |
|  SynthAdd  |  [SynthText_Add.zip](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg)  (code:627x)   |                                                                                                           [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt)                                                                                                            |                                                    -                                                    |       |
|  TextOCR  |  [下载地址](https://textvqa.org/textocr/dataset)   |                                                                                                           -                                                                                                           |                                                    -                                                    |       |
|  Totaltext  |  [下载地址](https://github.com/cs-chan/Total-Text-Dataset)   |                                                                                                           -                                                                                                           |                                                    -                                                    |       |
|  OpenVINO  |  [下载地址](https://github.com/cvdfoundation/open-images-dataset)   |                                                                                          [下载地址](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text)                                                                                                           |[下载地址](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text)|       |

(*) 注:由于官方的下载地址已经无法访问,我们提供了一个非官方的地址以供参考,但我们无法保证数据的准确性。

## 准备步骤

### ICDAR 2013
- 第一步:从 [下载地址](https://rrc.cvc.uab.es/?ch=2&com=downloads) 下载 `Challenge2_Test_Task3_Images.zip` 和 `Challenge2_Training_Task3_Images_GT.zip`
- 第二步:下载 [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) 和 [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt)

### ICDAR 2015
- 第一步:从 [下载地址](https://rrc.cvc.uab.es/?ch=4&com=downloads) 下载 `ch4_training_word_images_gt.zip` 和 `ch4_test_word_images_gt.zip`
- 第二步:下载 [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) and [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt)

### IIIT5K
- 第一步:从 [下载地址](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html) 下载 `IIIT5K-Word_V3.0.tar.gz`
- 第二步:下载 [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) 和 [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt)

### svt
- 第一步:从 [下载地址](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) 下载 `svt.zip`
- 第二步:下载 [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt)
- 第三步:
```bash
python tools/data/textrecog/svt_converter.py <download_svt_dir_path>
```

### ct80
- 第一步:下载 [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt)

### svtp
- 第一步:下载 [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt)

### coco_text
  - 第一步:从 [下载地址](https://rrc.cvc.uab.es/?ch=5&com=downloads) 下载文件
  - 第二步:下载 [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt)

### MJSynth (Syn90k)
  - 第一步:从 [下载地址](https://www.robots.ox.ac.uk/~vgg/data/text/) 下载 `mjsynth.tar.gz`
  - 第二步:下载 [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/shuffle_labels.txt)
  - 第三步:

  ```bash
  mkdir Syn90k && cd Syn90k

  mv /path/to/mjsynth.tar.gz .

  tar -xzf mjsynth.tar.gz

  mv /path/to/shuffle_labels.txt .
  mv /path/to/label.txt .

  # 创建软链接
  cd /path/to/mmocr/data/mixture

  ln -s /path/to/Syn90k Syn90k
  ```

### SynthText (Synth800k)
  - 第一步:下载 `SynthText.zip`: [下载地址](https://www.robots.ox.ac.uk/~vgg/data/scenetext/)

  - 第二步:请根据你的实际需要,从下列标注中选择最适合的下载:[label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/label.txt) (7,266,686个标注); [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) (2,400,000个随机采样的标注);[alphanumeric_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/alphanumeric_labels.txt) (7,239,272个仅包含数字和字母的标注);[instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) (7,266,686个字符级别的标注)。

  - 第三步:

  ```bash
  mkdir SynthText && cd SynthText
  mv /path/to/SynthText.zip .
  unzip SynthText.zip
  mv SynthText synthtext

  mv /path/to/shuffle_labels.txt .
  mv /path/to/label.txt .
  mv /path/to/alphanumeric_labels.txt .
  mv /path/to/instances_train.txt .

  # 创建软链接
  cd /path/to/mmocr/data/mixture
  ln -s /path/to/SynthText SynthText
  ```

  - 第四步:生成裁剪后的图像和标注:

  ```bash
  cd /path/to/mmocr

  python tools/data/textrecog/synthtext_converter.py data/mixture/SynthText/gt.mat data/mixture/SynthText/ data/mixture/SynthText/synthtext/SynthText_patch_horizontal --n_proc 8
  ```

### SynthAdd
  - 第一步:从 [SynthAdd](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x) 下载 `SynthText_Add.zip`
  - 第二步:下载 [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt)
  - 第三步:

  ```bash
  mkdir SynthAdd && cd SynthAdd

  mv /path/to/SynthText_Add.zip .

  unzip SynthText_Add.zip

  mv /path/to/label.txt .

  # 创建软链接
  cd /path/to/mmocr/data/mixture

  ln -s /path/to/SynthAdd SynthAdd
  ```
:::{tip}
运行以下命令,可以把 `.txt` 格式的标注文件转换成 `.lmdb` 格式:
```bash
python tools/data/utils/txt2lmdb.py -i <txt_label_path> -o <lmdb_label_path>
```
例如:
```bash
python tools/data/utils/txt2lmdb.py -i data/mixture/Syn90k/label.txt -o data/mixture/Syn90k/label.lmdb
```
:::

### TextOCR
  - 第一步:下载 [train_val_images.zip](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip),[TextOCR_0.1_train.json](https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_train.json) 和 [TextOCR_0.1_val.json](https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_val.json) 到 `textocr/` 目录.
  ```bash
  mkdir textocr && cd textocr

  # 下载 TextOCR 数据集
  wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
  wget https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_train.json
  wget https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_val.json

  # 对于数据图像
  unzip -q train_val_images.zip
  mv train_images train
  ```
  - 第二步:用四个并行进程剪裁图像然后生成  `train_label.txt`,`val_label.txt` ,可以使用以下命令:
  ```bash
  python tools/data/textrecog/textocr_converter.py /path/to/textocr 4
  ```


### Totaltext
  - 第一步:从 [github dataset](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Dataset) 下载 `totaltext.zip`,然后从 [github Groundtruth](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Groundtruth/Text) 下载 `groundtruth_text.zip` (我们建议下载 `.mat` 格式的标注文件,因为我们提供的 `totaltext_converter.py` 标注格式转换工具只支持 `.mat` 文件)
  ```bash
  mkdir totaltext && cd totaltext
  mkdir imgs && mkdir annotations

  # 对于图像数据
  # 在 ./totaltext 目录下运行
  unzip totaltext.zip
  mv Images/Train imgs/training
  mv Images/Test imgs/test

  # 对于标注文件
  unzip groundtruth_text.zip
  cd Groundtruth
  mv Polygon/Train ../annotations/training
  mv Polygon/Test ../annotations/test
  ```
  - 第二步:用以下命令生成经剪裁后的标注文件 `train_label.txt` 和 `test_label.txt` (剪裁后的图像会被保存在目录 `data/totaltext/dst_imgs/`):
  ```bash
  python tools/data/textrecog/totaltext_converter.py /path/to/totaltext -o /path/to/totaltext --split-list training test
  ```

### OpenVINO
  - 第零步:安装 [awscli](https://aws.amazon.com/cli/)。
  - 第一步:下载 [Open Images](https://github.com/cvdfoundation/open-images-dataset#download-images-with-bounding-boxes-annotations) 的子数据集 `train_1`、 `train_2`、 `train_5`、 `train_f` 及 `validation` 至 `openvino/`。
  ```bash
  mkdir openvino && cd openvino

  # 下载 Open Images 的子数据集
  for s in 1 2 5 f; do
    aws s3 --no-sign-request cp s3://open-images-dataset/tar/train_${s}.tar.gz .
  done
  aws s3 --no-sign-request cp s3://open-images-dataset/tar/validation.tar.gz .

  # 下载标注文件
  for s in 1 2 5 f; do
    wget https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text/text_spotting_openimages_v5_train_${s}.json
  done
  wget https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text/text_spotting_openimages_v5_validation.json

  # 解压数据集
  mkdir -p openimages_v5/val
  for s in 1 2 5 f; do
    tar zxf train_${s}.tar.gz -C openimages_v5
  done
  tar zxf validation.tar.gz -C openimages_v5/val
  ```
  - 第二步: 运行以下的命令,以用4个进程生成标注 `train_{1,2,5,f}_label.txt` 和 `val_label.txt` 并裁剪原图:
  ```bash
  python tools/data/textrecog/openvino_converter.py /path/to/openvino 4
  ```