Spaces:
Runtime error
Runtime error
File size: 19,594 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# 文字识别
## 概览
**文字识别任务的数据集应按如下目录配置:**
```text
├── mixture
│ ├── coco_text
│ │ ├── train_label.txt
│ │ ├── train_words
│ ├── icdar_2011
│ │ ├── training_label.txt
│ │ ├── Challenge1_Training_Task3_Images_GT
│ ├── icdar_2013
│ │ ├── train_label.txt
│ │ ├── test_label_1015.txt
│ │ ├── test_label_1095.txt
│ │ ├── Challenge2_Training_Task3_Images_GT
│ │ ├── Challenge2_Test_Task3_Images
│ ├── icdar_2015
│ │ ├── train_label.txt
│ │ ├── test_label.txt
│ │ ├── ch4_training_word_images_gt
│ │ ├── ch4_test_word_images_gt
│ ├── III5K
│ │ ├── train_label.txt
│ │ ├── test_label.txt
│ │ ├── train
│ │ ├── test
│ ├── ct80
│ │ ├── test_label.txt
│ │ ├── image
│ ├── svt
│ │ ├── test_label.txt
│ │ ├── image
│ ├── svtp
│ │ ├── test_label.txt
│ │ ├── image
│ ├── Syn90k
│ │ ├── shuffle_labels.txt
│ │ ├── label.txt
│ │ ├── label.lmdb
│ │ ├── mnt
│ ├── SynthText
│ │ ├── alphanumeric_labels.txt
│ │ ├── shuffle_labels.txt
│ │ ├── instances_train.txt
│ │ ├── label.txt
│ │ ├── label.lmdb
│ │ ├── synthtext
│ ├── SynthAdd
│ │ ├── label.txt
│ │ ├── label.lmdb
│ │ ├── SynthText_Add
│ ├── TextOCR
│ │ ├── image
│ │ ├── train_label.txt
│ │ ├── val_label.txt
│ ├── Totaltext
│ │ ├── imgs
│ │ ├── annotations
│ │ ├── train_label.txt
│ │ ├── test_label.txt
│ ├── OpenVINO
│ │ ├── image_1
│ │ ├── image_2
│ │ ├── image_5
│ │ ├── image_f
│ │ ├── image_val
│ │ ├── train_1_label.txt
│ │ ├── train_2_label.txt
│ │ ├── train_5_label.txt
│ │ ├── train_f_label.txt
│ │ ├── val_label.txt
```
| 数据集名称 | 数据图片 | 标注文件 | 标注文件 |
| :--------: | :-----------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------: |
| | | 训练集(training) | 测试集(test) |
| coco_text | [下载地址](https://rrc.cvc.uab.es/?ch=5&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt) | - | |
| icdar_2011 | [下载地址](http://www.cvc.uab.es/icdar2011competition/?com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | - | |
| icdar_2013 | [下载地址](https://rrc.cvc.uab.es/?ch=2&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt) | [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) | |
| icdar_2015 | [下载地址](https://rrc.cvc.uab.es/?ch=4&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt) | |
| IIIT5K | [下载地址](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt) | |
| ct80 | [下载地址](http://cs-chan.com/downloads_CUTE80_dataset.html) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt) | |
| svt |[下载地址](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt) | |
| svtp | [非官方下载地址*](https://github.com/Jyouhou/Case-Sensitive-Scene-Text-Recognition-Datasets) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt) | |
| MJSynth (Syn90k) | [下载地址](https://www.robots.ox.ac.uk/~vgg/data/text/) | [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/shuffle_labels.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/label.txt) | - | |
| SynthText (Synth800k) | [下载地址](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) |[alphanumeric_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/alphanumeric_labels.txt) \| [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) \| [instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/label.txt) | - | |
| SynthAdd | [SynthText_Add.zip](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x) | [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt) | - | |
| TextOCR | [下载地址](https://textvqa.org/textocr/dataset) | - | - | |
| Totaltext | [下载地址](https://github.com/cs-chan/Total-Text-Dataset) | - | - | |
| OpenVINO | [下载地址](https://github.com/cvdfoundation/open-images-dataset) | [下载地址](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) |[下载地址](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text)| |
(*) 注:由于官方的下载地址已经无法访问,我们提供了一个非官方的地址以供参考,但我们无法保证数据的准确性。
## 准备步骤
### ICDAR 2013
- 第一步:从 [下载地址](https://rrc.cvc.uab.es/?ch=2&com=downloads) 下载 `Challenge2_Test_Task3_Images.zip` 和 `Challenge2_Training_Task3_Images_GT.zip`
- 第二步:下载 [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) 和 [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt)
### ICDAR 2015
- 第一步:从 [下载地址](https://rrc.cvc.uab.es/?ch=4&com=downloads) 下载 `ch4_training_word_images_gt.zip` 和 `ch4_test_word_images_gt.zip`
- 第二步:下载 [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) and [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt)
### IIIT5K
- 第一步:从 [下载地址](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html) 下载 `IIIT5K-Word_V3.0.tar.gz`
- 第二步:下载 [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) 和 [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt)
### svt
- 第一步:从 [下载地址](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) 下载 `svt.zip`
- 第二步:下载 [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt)
- 第三步:
```bash
python tools/data/textrecog/svt_converter.py <download_svt_dir_path>
```
### ct80
- 第一步:下载 [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt)
### svtp
- 第一步:下载 [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt)
### coco_text
- 第一步:从 [下载地址](https://rrc.cvc.uab.es/?ch=5&com=downloads) 下载文件
- 第二步:下载 [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt)
### MJSynth (Syn90k)
- 第一步:从 [下载地址](https://www.robots.ox.ac.uk/~vgg/data/text/) 下载 `mjsynth.tar.gz`
- 第二步:下载 [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/shuffle_labels.txt)
- 第三步:
```bash
mkdir Syn90k && cd Syn90k
mv /path/to/mjsynth.tar.gz .
tar -xzf mjsynth.tar.gz
mv /path/to/shuffle_labels.txt .
mv /path/to/label.txt .
# 创建软链接
cd /path/to/mmocr/data/mixture
ln -s /path/to/Syn90k Syn90k
```
### SynthText (Synth800k)
- 第一步:下载 `SynthText.zip`: [下载地址](https://www.robots.ox.ac.uk/~vgg/data/scenetext/)
- 第二步:请根据你的实际需要,从下列标注中选择最适合的下载:[label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/label.txt) (7,266,686个标注); [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) (2,400,000个随机采样的标注);[alphanumeric_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/alphanumeric_labels.txt) (7,239,272个仅包含数字和字母的标注);[instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) (7,266,686个字符级别的标注)。
- 第三步:
```bash
mkdir SynthText && cd SynthText
mv /path/to/SynthText.zip .
unzip SynthText.zip
mv SynthText synthtext
mv /path/to/shuffle_labels.txt .
mv /path/to/label.txt .
mv /path/to/alphanumeric_labels.txt .
mv /path/to/instances_train.txt .
# 创建软链接
cd /path/to/mmocr/data/mixture
ln -s /path/to/SynthText SynthText
```
- 第四步:生成裁剪后的图像和标注:
```bash
cd /path/to/mmocr
python tools/data/textrecog/synthtext_converter.py data/mixture/SynthText/gt.mat data/mixture/SynthText/ data/mixture/SynthText/synthtext/SynthText_patch_horizontal --n_proc 8
```
### SynthAdd
- 第一步:从 [SynthAdd](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x) 下载 `SynthText_Add.zip`
- 第二步:下载 [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt)
- 第三步:
```bash
mkdir SynthAdd && cd SynthAdd
mv /path/to/SynthText_Add.zip .
unzip SynthText_Add.zip
mv /path/to/label.txt .
# 创建软链接
cd /path/to/mmocr/data/mixture
ln -s /path/to/SynthAdd SynthAdd
```
:::{tip}
运行以下命令,可以把 `.txt` 格式的标注文件转换成 `.lmdb` 格式:
```bash
python tools/data/utils/txt2lmdb.py -i <txt_label_path> -o <lmdb_label_path>
```
例如:
```bash
python tools/data/utils/txt2lmdb.py -i data/mixture/Syn90k/label.txt -o data/mixture/Syn90k/label.lmdb
```
:::
### TextOCR
- 第一步:下载 [train_val_images.zip](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip),[TextOCR_0.1_train.json](https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_train.json) 和 [TextOCR_0.1_val.json](https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_val.json) 到 `textocr/` 目录.
```bash
mkdir textocr && cd textocr
# 下载 TextOCR 数据集
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
wget https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_train.json
wget https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_val.json
# 对于数据图像
unzip -q train_val_images.zip
mv train_images train
```
- 第二步:用四个并行进程剪裁图像然后生成 `train_label.txt`,`val_label.txt` ,可以使用以下命令:
```bash
python tools/data/textrecog/textocr_converter.py /path/to/textocr 4
```
### Totaltext
- 第一步:从 [github dataset](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Dataset) 下载 `totaltext.zip`,然后从 [github Groundtruth](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Groundtruth/Text) 下载 `groundtruth_text.zip` (我们建议下载 `.mat` 格式的标注文件,因为我们提供的 `totaltext_converter.py` 标注格式转换工具只支持 `.mat` 文件)
```bash
mkdir totaltext && cd totaltext
mkdir imgs && mkdir annotations
# 对于图像数据
# 在 ./totaltext 目录下运行
unzip totaltext.zip
mv Images/Train imgs/training
mv Images/Test imgs/test
# 对于标注文件
unzip groundtruth_text.zip
cd Groundtruth
mv Polygon/Train ../annotations/training
mv Polygon/Test ../annotations/test
```
- 第二步:用以下命令生成经剪裁后的标注文件 `train_label.txt` 和 `test_label.txt` (剪裁后的图像会被保存在目录 `data/totaltext/dst_imgs/`):
```bash
python tools/data/textrecog/totaltext_converter.py /path/to/totaltext -o /path/to/totaltext --split-list training test
```
### OpenVINO
- 第零步:安装 [awscli](https://aws.amazon.com/cli/)。
- 第一步:下载 [Open Images](https://github.com/cvdfoundation/open-images-dataset#download-images-with-bounding-boxes-annotations) 的子数据集 `train_1`、 `train_2`、 `train_5`、 `train_f` 及 `validation` 至 `openvino/`。
```bash
mkdir openvino && cd openvino
# 下载 Open Images 的子数据集
for s in 1 2 5 f; do
aws s3 --no-sign-request cp s3://open-images-dataset/tar/train_${s}.tar.gz .
done
aws s3 --no-sign-request cp s3://open-images-dataset/tar/validation.tar.gz .
# 下载标注文件
for s in 1 2 5 f; do
wget https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text/text_spotting_openimages_v5_train_${s}.json
done
wget https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text/text_spotting_openimages_v5_validation.json
# 解压数据集
mkdir -p openimages_v5/val
for s in 1 2 5 f; do
tar zxf train_${s}.tar.gz -C openimages_v5
done
tar zxf validation.tar.gz -C openimages_v5/val
```
- 第二步: 运行以下的命令,以用4个进程生成标注 `train_{1,2,5,f}_label.txt` 和 `val_label.txt` 并裁剪原图:
```bash
python tools/data/textrecog/openvino_converter.py /path/to/openvino 4
```
|