Spaces:
Runtime error
Runtime error
File size: 8,081 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import mmcv
import numpy as np
import torch
from mmcv.ops import RoIPool
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint
from mmdet.core import get_classes
from mmdet.datasets import replace_ImageToTensor
from mmdet.datasets.pipelines import Compose
from mmocr.models import build_detector
from mmocr.utils import is_2dlist
from .utils import disable_text_recog_aug_test
def init_detector(config, checkpoint=None, device='cuda:0', cfg_options=None):
"""Initialize a detector from config file.
Args:
config (str or :obj:`mmcv.Config`): Config file path or the config
object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
cfg_options (dict): Options to override some settings in the used
config.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, str):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
if cfg_options is not None:
config.merge_from_dict(cfg_options)
if config.model.get('pretrained'):
config.model.pretrained = None
config.model.train_cfg = None
model = build_detector(config.model, test_cfg=config.get('test_cfg'))
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
if 'CLASSES' in checkpoint.get('meta', {}):
model.CLASSES = checkpoint['meta']['CLASSES']
else:
warnings.simplefilter('once')
warnings.warn('Class names are not saved in the checkpoint\'s '
'meta data, use COCO classes by default.')
model.CLASSES = get_classes('coco')
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
return model
def model_inference(model,
imgs,
ann=None,
batch_mode=False,
return_data=False):
"""Inference image(s) with the detector.
Args:
model (nn.Module): The loaded detector.
imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]):
Either image files or loaded images.
batch_mode (bool): If True, use batch mode for inference.
ann (dict): Annotation info for key information extraction.
return_data: Return postprocessed data.
Returns:
result (dict): Predicted results.
"""
if isinstance(imgs, (list, tuple)):
is_batch = True
if len(imgs) == 0:
raise Exception('empty imgs provided, please check and try again')
if not isinstance(imgs[0], (np.ndarray, str)):
raise AssertionError('imgs must be strings or numpy arrays')
elif isinstance(imgs, (np.ndarray, str)):
imgs = [imgs]
is_batch = False
else:
raise AssertionError('imgs must be strings or numpy arrays')
is_ndarray = isinstance(imgs[0], np.ndarray)
cfg = model.cfg
if batch_mode:
cfg = disable_text_recog_aug_test(cfg, set_types=['test'])
device = next(model.parameters()).device # model device
if cfg.data.test.get('pipeline', None) is None:
if is_2dlist(cfg.data.test.datasets):
cfg.data.test.pipeline = cfg.data.test.datasets[0][0].pipeline
else:
cfg.data.test.pipeline = cfg.data.test.datasets[0].pipeline
if is_2dlist(cfg.data.test.pipeline):
cfg.data.test.pipeline = cfg.data.test.pipeline[0]
if is_ndarray:
cfg = cfg.copy()
# set loading pipeline type
cfg.data.test.pipeline[0].type = 'LoadImageFromNdarray'
cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
test_pipeline = Compose(cfg.data.test.pipeline)
datas = []
for img in imgs:
# prepare data
if is_ndarray:
# directly add img
data = dict(
img=img,
ann_info=ann,
img_info=dict(width=img.shape[1], height=img.shape[0]),
bbox_fields=[])
else:
# add information into dict
data = dict(
img_info=dict(filename=img),
img_prefix=None,
ann_info=ann,
bbox_fields=[])
if ann is not None:
data.update(dict(**ann))
# build the data pipeline
data = test_pipeline(data)
# get tensor from list to stack for batch mode (text detection)
if batch_mode:
if cfg.data.test.pipeline[1].type == 'MultiScaleFlipAug':
for key, value in data.items():
data[key] = value[0]
datas.append(data)
if isinstance(datas[0]['img'], list) and len(datas) > 1:
raise Exception('aug test does not support '
f'inference with batch size '
f'{len(datas)}')
data = collate(datas, samples_per_gpu=len(imgs))
# process img_metas
if isinstance(data['img_metas'], list):
data['img_metas'] = [
img_metas.data[0] for img_metas in data['img_metas']
]
else:
data['img_metas'] = data['img_metas'].data
if isinstance(data['img'], list):
data['img'] = [img.data for img in data['img']]
if isinstance(data['img'][0], list):
data['img'] = [img[0] for img in data['img']]
else:
data['img'] = data['img'].data
# for KIE models
if ann is not None:
data['relations'] = data['relations'].data[0]
data['gt_bboxes'] = data['gt_bboxes'].data[0]
data['texts'] = data['texts'].data[0]
data['img'] = data['img'][0]
data['img_metas'] = data['img_metas'][0]
if next(model.parameters()).is_cuda:
# scatter to specified GPU
data = scatter(data, [device])[0]
else:
for m in model.modules():
assert not isinstance(
m, RoIPool
), 'CPU inference with RoIPool is not supported currently.'
# forward the model
with torch.no_grad():
results = model(return_loss=False, rescale=True, **data)
if not is_batch:
if not return_data:
return results[0]
return results[0], datas[0]
else:
if not return_data:
return results
return results, datas
def text_model_inference(model, input_sentence):
"""Inference text(s) with the entity recognizer.
Args:
model (nn.Module): The loaded recognizer.
input_sentence (str): A text entered by the user.
Returns:
result (dict): Predicted results.
"""
assert isinstance(input_sentence, str)
cfg = model.cfg
if cfg.data.test.get('pipeline', None) is None:
if is_2dlist(cfg.data.test.datasets):
cfg.data.test.pipeline = cfg.data.test.datasets[0][0].pipeline
else:
cfg.data.test.pipeline = cfg.data.test.datasets[0].pipeline
if is_2dlist(cfg.data.test.pipeline):
cfg.data.test.pipeline = cfg.data.test.pipeline[0]
test_pipeline = Compose(cfg.data.test.pipeline)
data = {'text': input_sentence, 'label': {}}
# build the data pipeline
data = test_pipeline(data)
if isinstance(data['img_metas'], dict):
img_metas = data['img_metas']
else:
img_metas = data['img_metas'].data
assert isinstance(img_metas, dict)
img_metas = {
'input_ids': img_metas['input_ids'].unsqueeze(0),
'attention_masks': img_metas['attention_masks'].unsqueeze(0),
'token_type_ids': img_metas['token_type_ids'].unsqueeze(0),
'labels': img_metas['labels'].unsqueeze(0)
}
# forward the model
with torch.no_grad():
result = model(None, img_metas, return_loss=False)
return result
|