Spaces:
Runtime error
Runtime error
File size: 8,070 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import mmocr.utils as utils
from . import utils as eval_utils
def compute_recall_precision(gt_polys, pred_polys):
"""Compute the recall and the precision matrices between gt and predicted
polygons.
Args:
gt_polys (list[Polygon]): List of gt polygons.
pred_polys (list[Polygon]): List of predicted polygons.
Returns:
recall (ndarray): Recall matrix of size gt_num x det_num.
precision (ndarray): Precision matrix of size gt_num x det_num.
"""
assert isinstance(gt_polys, list)
assert isinstance(pred_polys, list)
gt_num = len(gt_polys)
det_num = len(pred_polys)
sz = [gt_num, det_num]
recall = np.zeros(sz)
precision = np.zeros(sz)
# compute area recall and precision for each (gt, det) pair
# in one img
for gt_id in range(gt_num):
for pred_id in range(det_num):
gt = gt_polys[gt_id]
det = pred_polys[pred_id]
inter_area = eval_utils.poly_intersection(det, gt)
gt_area = gt.area
det_area = det.area
if gt_area != 0:
recall[gt_id, pred_id] = inter_area / gt_area
if det_area != 0:
precision[gt_id, pred_id] = inter_area / det_area
return recall, precision
def eval_hmean_ic13(det_boxes,
gt_boxes,
gt_ignored_boxes,
precision_thr=0.4,
recall_thr=0.8,
center_dist_thr=1.0,
one2one_score=1.,
one2many_score=0.8,
many2one_score=1.):
"""Evaluate hmean of text detection using the icdar2013 standard.
Args:
det_boxes (list[list[list[float]]]): List of arrays of shape (n, 2k).
Each element is the det_boxes for one img. k>=4.
gt_boxes (list[list[list[float]]]): List of arrays of shape (m, 2k).
Each element is the gt_boxes for one img. k>=4.
gt_ignored_boxes (list[list[list[float]]]): List of arrays of
(l, 2k). Each element is the ignored gt_boxes for one img. k>=4.
precision_thr (float): Precision threshold of the iou of one
(gt_box, det_box) pair.
recall_thr (float): Recall threshold of the iou of one
(gt_box, det_box) pair.
center_dist_thr (float): Distance threshold of one (gt_box, det_box)
center point pair.
one2one_score (float): Reward when one gt matches one det_box.
one2many_score (float): Reward when one gt matches many det_boxes.
many2one_score (float): Reward when many gts match one det_box.
Returns:
hmean (tuple[dict]): Tuple of dicts which encodes the hmean for
the dataset and all images.
"""
assert utils.is_3dlist(det_boxes)
assert utils.is_3dlist(gt_boxes)
assert utils.is_3dlist(gt_ignored_boxes)
assert 0 <= precision_thr <= 1
assert 0 <= recall_thr <= 1
assert center_dist_thr > 0
assert 0 <= one2one_score <= 1
assert 0 <= one2many_score <= 1
assert 0 <= many2one_score <= 1
img_num = len(det_boxes)
assert img_num == len(gt_boxes)
assert img_num == len(gt_ignored_boxes)
dataset_gt_num = 0
dataset_pred_num = 0
dataset_hit_recall = 0.0
dataset_hit_prec = 0.0
img_results = []
for i in range(img_num):
gt = gt_boxes[i]
gt_ignored = gt_ignored_boxes[i]
pred = det_boxes[i]
gt_num = len(gt)
ignored_num = len(gt_ignored)
pred_num = len(pred)
accum_recall = 0.
accum_precision = 0.
gt_points = gt + gt_ignored
gt_polys = [eval_utils.points2polygon(p) for p in gt_points]
gt_ignored_index = [gt_num + i for i in range(len(gt_ignored))]
gt_num = len(gt_polys)
pred_polys, pred_points, pred_ignored_index = eval_utils.ignore_pred(
pred, gt_ignored_index, gt_polys, precision_thr)
if pred_num > 0 and gt_num > 0:
gt_hit = np.zeros(gt_num, np.int8).tolist()
pred_hit = np.zeros(pred_num, np.int8).tolist()
# compute area recall and precision for each (gt, pred) pair
# in one img.
recall_mat, precision_mat = compute_recall_precision(
gt_polys, pred_polys)
# match one gt to one pred box.
for gt_id in range(gt_num):
for pred_id in range(pred_num):
if (gt_hit[gt_id] != 0 or pred_hit[pred_id] != 0
or gt_id in gt_ignored_index
or pred_id in pred_ignored_index):
continue
match = eval_utils.one2one_match_ic13(
gt_id, pred_id, recall_mat, precision_mat, recall_thr,
precision_thr)
if match:
gt_point = np.array(gt_points[gt_id])
det_point = np.array(pred_points[pred_id])
norm_dist = eval_utils.box_center_distance(
det_point, gt_point)
norm_dist /= eval_utils.box_diag(
det_point) + eval_utils.box_diag(gt_point)
norm_dist *= 2.0
if norm_dist < center_dist_thr:
gt_hit[gt_id] = 1
pred_hit[pred_id] = 1
accum_recall += one2one_score
accum_precision += one2one_score
# match one gt to many det boxes.
for gt_id in range(gt_num):
if gt_id in gt_ignored_index:
continue
match, match_det_set = eval_utils.one2many_match_ic13(
gt_id, recall_mat, precision_mat, recall_thr,
precision_thr, gt_hit, pred_hit, pred_ignored_index)
if match:
gt_hit[gt_id] = 1
accum_recall += one2many_score
accum_precision += one2many_score * len(match_det_set)
for pred_id in match_det_set:
pred_hit[pred_id] = 1
# match many gt to one det box. One pair of (det,gt) are matched
# successfully if their recall, precision, normalized distance
# meet some thresholds.
for pred_id in range(pred_num):
if pred_id in pred_ignored_index:
continue
match, match_gt_set = eval_utils.many2one_match_ic13(
pred_id, recall_mat, precision_mat, recall_thr,
precision_thr, gt_hit, pred_hit, gt_ignored_index)
if match:
pred_hit[pred_id] = 1
accum_recall += many2one_score * len(match_gt_set)
accum_precision += many2one_score
for gt_id in match_gt_set:
gt_hit[gt_id] = 1
gt_care_number = gt_num - ignored_num
pred_care_number = pred_num - len(pred_ignored_index)
r, p, h = eval_utils.compute_hmean(accum_recall, accum_precision,
gt_care_number, pred_care_number)
img_results.append({'recall': r, 'precision': p, 'hmean': h})
dataset_gt_num += gt_care_number
dataset_pred_num += pred_care_number
dataset_hit_recall += accum_recall
dataset_hit_prec += accum_precision
total_r, total_p, total_h = eval_utils.compute_hmean(
dataset_hit_recall, dataset_hit_prec, dataset_gt_num, dataset_pred_num)
dataset_results = {
'num_gts': dataset_gt_num,
'num_dets': dataset_pred_num,
'num_recall': dataset_hit_recall,
'num_precision': dataset_hit_prec,
'recall': total_r,
'precision': total_p,
'hmean': total_h
}
return dataset_results, img_results
|