Spaces:
Runtime error
Runtime error
File size: 21,543 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import ConvModule, build_norm_layer
from mmcv.runner import BaseModule
from mmcv.utils.parrots_wrapper import _BatchNorm
from mmocr.models.builder import (BACKBONES, UPSAMPLE_LAYERS,
build_activation_layer, build_upsample_layer)
class UpConvBlock(nn.Module):
"""Upsample convolution block in decoder for UNet.
This upsample convolution block consists of one upsample module
followed by one convolution block. The upsample module expands the
high-level low-resolution feature map and the convolution block fuses
the upsampled high-level low-resolution feature map and the low-level
high-resolution feature map from encoder.
Args:
conv_block (nn.Sequential): Sequential of convolutional layers.
in_channels (int): Number of input channels of the high-level
skip_channels (int): Number of input channels of the low-level
high-resolution feature map from encoder.
out_channels (int): Number of output channels.
num_convs (int): Number of convolutional layers in the conv_block.
Default: 2.
stride (int): Stride of convolutional layer in conv_block. Default: 1.
dilation (int): Dilation rate of convolutional layer in conv_block.
Default: 1.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
conv_cfg (dict | None): Config dict for convolution layer.
Default: None.
norm_cfg (dict | None): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict | None): Config dict for activation layer in ConvModule.
Default: dict(type='ReLU').
upsample_cfg (dict): The upsample config of the upsample module in
decoder. Default: dict(type='InterpConv'). If the size of
high-level feature map is the same as that of skip feature map
(low-level feature map from encoder), it does not need upsample the
high-level feature map and the upsample_cfg is None.
dcn (bool): Use deformable convolution in convolutional layer or not.
Default: None.
plugins (dict): plugins for convolutional layers. Default: None.
"""
def __init__(self,
conv_block,
in_channels,
skip_channels,
out_channels,
num_convs=2,
stride=1,
dilation=1,
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
upsample_cfg=dict(type='InterpConv'),
dcn=None,
plugins=None):
super().__init__()
assert dcn is None, 'Not implemented yet.'
assert plugins is None, 'Not implemented yet.'
self.conv_block = conv_block(
in_channels=2 * skip_channels,
out_channels=out_channels,
num_convs=num_convs,
stride=stride,
dilation=dilation,
with_cp=with_cp,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
dcn=None,
plugins=None)
if upsample_cfg is not None:
self.upsample = build_upsample_layer(
cfg=upsample_cfg,
in_channels=in_channels,
out_channels=skip_channels,
with_cp=with_cp,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
else:
self.upsample = ConvModule(
in_channels,
skip_channels,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
def forward(self, skip, x):
"""Forward function."""
x = self.upsample(x)
out = torch.cat([skip, x], dim=1)
out = self.conv_block(out)
return out
class BasicConvBlock(nn.Module):
"""Basic convolutional block for UNet.
This module consists of several plain convolutional layers.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
num_convs (int): Number of convolutional layers. Default: 2.
stride (int): Whether use stride convolution to downsample
the input feature map. If stride=2, it only uses stride convolution
in the first convolutional layer to downsample the input feature
map. Options are 1 or 2. Default: 1.
dilation (int): Whether use dilated convolution to expand the
receptive field. Set dilation rate of each convolutional layer and
the dilation rate of the first convolutional layer is always 1.
Default: 1.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
conv_cfg (dict | None): Config dict for convolution layer.
Default: None.
norm_cfg (dict | None): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict | None): Config dict for activation layer in ConvModule.
Default: dict(type='ReLU').
dcn (bool): Use deformable convolution in convolutional layer or not.
Default: None.
plugins (dict): plugins for convolutional layers. Default: None.
"""
def __init__(self,
in_channels,
out_channels,
num_convs=2,
stride=1,
dilation=1,
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
dcn=None,
plugins=None):
super().__init__()
assert dcn is None, 'Not implemented yet.'
assert plugins is None, 'Not implemented yet.'
self.with_cp = with_cp
convs = []
for i in range(num_convs):
convs.append(
ConvModule(
in_channels=in_channels if i == 0 else out_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride if i == 0 else 1,
dilation=1 if i == 0 else dilation,
padding=1 if i == 0 else dilation,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
self.convs = nn.Sequential(*convs)
def forward(self, x):
"""Forward function."""
if self.with_cp and x.requires_grad:
out = cp.checkpoint(self.convs, x)
else:
out = self.convs(x)
return out
@UPSAMPLE_LAYERS.register_module()
class DeconvModule(nn.Module):
"""Deconvolution upsample module in decoder for UNet (2X upsample).
This module uses deconvolution to upsample feature map in the decoder
of UNet.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
norm_cfg (dict | None): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict | None): Config dict for activation layer in ConvModule.
Default: dict(type='ReLU').
kernel_size (int): Kernel size of the convolutional layer. Default: 4.
"""
def __init__(self,
in_channels,
out_channels,
with_cp=False,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
*,
kernel_size=4,
scale_factor=2):
super().__init__()
assert (
kernel_size - scale_factor >= 0
and (kernel_size - scale_factor) % 2 == 0), (
f'kernel_size should be greater than or equal to scale_factor '
f'and (kernel_size - scale_factor) should be even numbers, '
f'while the kernel size is {kernel_size} and scale_factor is '
f'{scale_factor}.')
stride = scale_factor
padding = (kernel_size - scale_factor) // 2
self.with_cp = with_cp
deconv = nn.ConvTranspose2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding)
_, norm = build_norm_layer(norm_cfg, out_channels)
activate = build_activation_layer(act_cfg)
self.deconv_upsamping = nn.Sequential(deconv, norm, activate)
def forward(self, x):
"""Forward function."""
if self.with_cp and x.requires_grad:
out = cp.checkpoint(self.deconv_upsamping, x)
else:
out = self.deconv_upsamping(x)
return out
@UPSAMPLE_LAYERS.register_module()
class InterpConv(nn.Module):
"""Interpolation upsample module in decoder for UNet.
This module uses interpolation to upsample feature map in the decoder
of UNet. It consists of one interpolation upsample layer and one
convolutional layer. It can be one interpolation upsample layer followed
by one convolutional layer (conv_first=False) or one convolutional layer
followed by one interpolation upsample layer (conv_first=True).
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
norm_cfg (dict | None): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict | None): Config dict for activation layer in ConvModule.
Default: dict(type='ReLU').
conv_cfg (dict | None): Config dict for convolution layer.
Default: None.
conv_first (bool): Whether convolutional layer or interpolation
upsample layer first. Default: False. It means interpolation
upsample layer followed by one convolutional layer.
kernel_size (int): Kernel size of the convolutional layer. Default: 1.
stride (int): Stride of the convolutional layer. Default: 1.
padding (int): Padding of the convolutional layer. Default: 1.
upsample_cfg (dict): Interpolation config of the upsample layer.
Default: dict(
scale_factor=2, mode='bilinear', align_corners=False).
"""
def __init__(self,
in_channels,
out_channels,
with_cp=False,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
*,
conv_cfg=None,
conv_first=False,
kernel_size=1,
stride=1,
padding=0,
upsample_cfg=dict(
scale_factor=2, mode='bilinear', align_corners=False)):
super().__init__()
self.with_cp = with_cp
conv = ConvModule(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
upsample = nn.Upsample(**upsample_cfg)
if conv_first:
self.interp_upsample = nn.Sequential(conv, upsample)
else:
self.interp_upsample = nn.Sequential(upsample, conv)
def forward(self, x):
"""Forward function."""
if self.with_cp and x.requires_grad:
out = cp.checkpoint(self.interp_upsample, x)
else:
out = self.interp_upsample(x)
return out
@BACKBONES.register_module()
class UNet(BaseModule):
"""UNet backbone.
U-Net: Convolutional Networks for Biomedical Image Segmentation.
https://arxiv.org/pdf/1505.04597.pdf
Args:
in_channels (int): Number of input image channels. Default" 3.
base_channels (int): Number of base channels of each stage.
The output channels of the first stage. Default: 64.
num_stages (int): Number of stages in encoder, normally 5. Default: 5.
strides (Sequence[int 1 | 2]): Strides of each stage in encoder.
len(strides) is equal to num_stages. Normally the stride of the
first stage in encoder is 1. If strides[i]=2, it uses stride
convolution to downsample in the correspondence encoder stage.
Default: (1, 1, 1, 1, 1).
enc_num_convs (Sequence[int]): Number of convolutional layers in the
convolution block of the correspondence encoder stage.
Default: (2, 2, 2, 2, 2).
dec_num_convs (Sequence[int]): Number of convolutional layers in the
convolution block of the correspondence decoder stage.
Default: (2, 2, 2, 2).
downsamples (Sequence[int]): Whether use MaxPool to downsample the
feature map after the first stage of encoder
(stages: [1, num_stages)). If the correspondence encoder stage use
stride convolution (strides[i]=2), it will never use MaxPool to
downsample, even downsamples[i-1]=True.
Default: (True, True, True, True).
enc_dilations (Sequence[int]): Dilation rate of each stage in encoder.
Default: (1, 1, 1, 1, 1).
dec_dilations (Sequence[int]): Dilation rate of each stage in decoder.
Default: (1, 1, 1, 1).
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
conv_cfg (dict | None): Config dict for convolution layer.
Default: None.
norm_cfg (dict | None): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict | None): Config dict for activation layer in ConvModule.
Default: dict(type='ReLU').
upsample_cfg (dict): The upsample config of the upsample module in
decoder. Default: dict(type='InterpConv').
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
dcn (bool): Use deformable convolution in convolutional layer or not.
Default: None.
plugins (dict): plugins for convolutional layers. Default: None.
Notice:
The input image size should be divisible by the whole downsample rate
of the encoder. More detail of the whole downsample rate can be found
in UNet._check_input_divisible.
"""
def __init__(self,
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, True),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1),
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
upsample_cfg=dict(type='InterpConv'),
norm_eval=False,
dcn=None,
plugins=None,
init_cfg=[
dict(type='Kaiming', layer='Conv2d'),
dict(
type='Constant',
layer=['_BatchNorm', 'GroupNorm'],
val=1)
]):
super().__init__(init_cfg=init_cfg)
assert dcn is None, 'Not implemented yet.'
assert plugins is None, 'Not implemented yet.'
assert len(strides) == num_stages, (
'The length of strides should be equal to num_stages, '
f'while the strides is {strides}, the length of '
f'strides is {len(strides)}, and the num_stages is '
f'{num_stages}.')
assert len(enc_num_convs) == num_stages, (
'The length of enc_num_convs should be equal to num_stages, '
f'while the enc_num_convs is {enc_num_convs}, the length of '
f'enc_num_convs is {len(enc_num_convs)}, and the num_stages is '
f'{num_stages}.')
assert len(dec_num_convs) == (num_stages - 1), (
'The length of dec_num_convs should be equal to (num_stages-1), '
f'while the dec_num_convs is {dec_num_convs}, the length of '
f'dec_num_convs is {len(dec_num_convs)}, and the num_stages is '
f'{num_stages}.')
assert len(downsamples) == (num_stages - 1), (
'The length of downsamples should be equal to (num_stages-1), '
f'while the downsamples is {downsamples}, the length of '
f'downsamples is {len(downsamples)}, and the num_stages is '
f'{num_stages}.')
assert len(enc_dilations) == num_stages, (
'The length of enc_dilations should be equal to num_stages, '
f'while the enc_dilations is {enc_dilations}, the length of '
f'enc_dilations is {len(enc_dilations)}, and the num_stages is '
f'{num_stages}.')
assert len(dec_dilations) == (num_stages - 1), (
'The length of dec_dilations should be equal to (num_stages-1), '
f'while the dec_dilations is {dec_dilations}, the length of '
f'dec_dilations is {len(dec_dilations)}, and the num_stages is '
f'{num_stages}.')
self.num_stages = num_stages
self.strides = strides
self.downsamples = downsamples
self.norm_eval = norm_eval
self.base_channels = base_channels
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
for i in range(num_stages):
enc_conv_block = []
if i != 0:
if strides[i] == 1 and downsamples[i - 1]:
enc_conv_block.append(nn.MaxPool2d(kernel_size=2))
upsample = (strides[i] != 1 or downsamples[i - 1])
self.decoder.append(
UpConvBlock(
conv_block=BasicConvBlock,
in_channels=base_channels * 2**i,
skip_channels=base_channels * 2**(i - 1),
out_channels=base_channels * 2**(i - 1),
num_convs=dec_num_convs[i - 1],
stride=1,
dilation=dec_dilations[i - 1],
with_cp=with_cp,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
upsample_cfg=upsample_cfg if upsample else None,
dcn=None,
plugins=None))
enc_conv_block.append(
BasicConvBlock(
in_channels=in_channels,
out_channels=base_channels * 2**i,
num_convs=enc_num_convs[i],
stride=strides[i],
dilation=enc_dilations[i],
with_cp=with_cp,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
dcn=None,
plugins=None))
self.encoder.append((nn.Sequential(*enc_conv_block)))
in_channels = base_channels * 2**i
def forward(self, x):
self._check_input_divisible(x)
enc_outs = []
for enc in self.encoder:
x = enc(x)
enc_outs.append(x)
dec_outs = [x]
for i in reversed(range(len(self.decoder))):
x = self.decoder[i](enc_outs[i], x)
dec_outs.append(x)
return dec_outs
def train(self, mode=True):
"""Convert the model into training mode while keep normalization layer
freezed."""
super().train(mode)
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()
def _check_input_divisible(self, x):
h, w = x.shape[-2:]
whole_downsample_rate = 1
for i in range(1, self.num_stages):
if self.strides[i] == 2 or self.downsamples[i - 1]:
whole_downsample_rate *= 2
assert (
h % whole_downsample_rate == 0 and w % whole_downsample_rate == 0
), (f'The input image size {(h, w)} should be divisible by the whole '
f'downsample rate {whole_downsample_rate}, when num_stages is '
f'{self.num_stages}, strides is {self.strides}, and downsamples '
f'is {self.downsamples}.')
|