File size: 7,914 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
import torch.nn.functional as F
from mmdet.core import multi_apply
from torch import nn

from mmocr.models.builder import LOSSES


@LOSSES.register_module()
class FCELoss(nn.Module):
    """The class for implementing FCENet loss.

    FCENet(CVPR2021): `Fourier Contour Embedding for Arbitrary-shaped Text
    Detection <https://arxiv.org/abs/2104.10442>`_

    Args:
        fourier_degree (int) : The maximum Fourier transform degree k.
        num_sample (int) : The sampling points number of regression
            loss. If it is too small, fcenet tends to be overfitting.
        ohem_ratio (float): the negative/positive ratio in OHEM.
    """

    def __init__(self, fourier_degree, num_sample, ohem_ratio=3.):
        super().__init__()
        self.fourier_degree = fourier_degree
        self.num_sample = num_sample
        self.ohem_ratio = ohem_ratio

    def forward(self, preds, _, p3_maps, p4_maps, p5_maps):
        """Compute FCENet loss.

        Args:
            preds (list[list[Tensor]]): The outer list indicates images
                in a batch, and the inner list indicates the classification
                prediction map (with shape :math:`(N, C, H, W)`) and
                regression map (with shape :math:`(N, C, H, W)`).
            p3_maps (list[ndarray]): List of leval 3 ground truth target map
                with shape :math:`(C, H, W)`.
            p4_maps (list[ndarray]): List of leval 4 ground truth target map
                with shape :math:`(C, H, W)`.
            p5_maps (list[ndarray]): List of leval 5 ground truth target map
                with shape :math:`(C, H, W)`.

        Returns:
            dict:  A loss dict with ``loss_text``, ``loss_center``,
            ``loss_reg_x`` and ``loss_reg_y``.
        """
        assert isinstance(preds, list)
        assert p3_maps[0].shape[0] == 4 * self.fourier_degree + 5,\
            'fourier degree not equal in FCEhead and FCEtarget'

        device = preds[0][0].device
        # to tensor
        gts = [p3_maps, p4_maps, p5_maps]
        for idx, maps in enumerate(gts):
            gts[idx] = torch.from_numpy(np.stack(maps)).float().to(device)

        losses = multi_apply(self.forward_single, preds, gts)

        loss_tr = torch.tensor(0., device=device).float()
        loss_tcl = torch.tensor(0., device=device).float()
        loss_reg_x = torch.tensor(0., device=device).float()
        loss_reg_y = torch.tensor(0., device=device).float()

        for idx, loss in enumerate(losses):
            if idx == 0:
                loss_tr += sum(loss)
            elif idx == 1:
                loss_tcl += sum(loss)
            elif idx == 2:
                loss_reg_x += sum(loss)
            else:
                loss_reg_y += sum(loss)

        results = dict(
            loss_text=loss_tr,
            loss_center=loss_tcl,
            loss_reg_x=loss_reg_x,
            loss_reg_y=loss_reg_y,
        )

        return results

    def forward_single(self, pred, gt):
        cls_pred = pred[0].permute(0, 2, 3, 1).contiguous()
        reg_pred = pred[1].permute(0, 2, 3, 1).contiguous()
        gt = gt.permute(0, 2, 3, 1).contiguous()

        k = 2 * self.fourier_degree + 1
        tr_pred = cls_pred[:, :, :, :2].view(-1, 2)
        tcl_pred = cls_pred[:, :, :, 2:].view(-1, 2)
        x_pred = reg_pred[:, :, :, 0:k].view(-1, k)
        y_pred = reg_pred[:, :, :, k:2 * k].view(-1, k)

        tr_mask = gt[:, :, :, :1].view(-1)
        tcl_mask = gt[:, :, :, 1:2].view(-1)
        train_mask = gt[:, :, :, 2:3].view(-1)
        x_map = gt[:, :, :, 3:3 + k].view(-1, k)
        y_map = gt[:, :, :, 3 + k:].view(-1, k)

        tr_train_mask = train_mask * tr_mask
        device = x_map.device
        # tr loss
        loss_tr = self.ohem(tr_pred, tr_mask.long(), train_mask.long())

        # tcl loss
        loss_tcl = torch.tensor(0.).float().to(device)
        tr_neg_mask = 1 - tr_train_mask
        if tr_train_mask.sum().item() > 0:
            loss_tcl_pos = F.cross_entropy(
                tcl_pred[tr_train_mask.bool()],
                tcl_mask[tr_train_mask.bool()].long())
            loss_tcl_neg = F.cross_entropy(tcl_pred[tr_neg_mask.bool()],
                                           tcl_mask[tr_neg_mask.bool()].long())
            loss_tcl = loss_tcl_pos + 0.5 * loss_tcl_neg

        # regression loss
        loss_reg_x = torch.tensor(0.).float().to(device)
        loss_reg_y = torch.tensor(0.).float().to(device)
        if tr_train_mask.sum().item() > 0:
            weight = (tr_mask[tr_train_mask.bool()].float() +
                      tcl_mask[tr_train_mask.bool()].float()) / 2
            weight = weight.contiguous().view(-1, 1)

            ft_x, ft_y = self.fourier2poly(x_map, y_map)
            ft_x_pre, ft_y_pre = self.fourier2poly(x_pred, y_pred)

            loss_reg_x = torch.mean(weight * F.smooth_l1_loss(
                ft_x_pre[tr_train_mask.bool()],
                ft_x[tr_train_mask.bool()],
                reduction='none'))
            loss_reg_y = torch.mean(weight * F.smooth_l1_loss(
                ft_y_pre[tr_train_mask.bool()],
                ft_y[tr_train_mask.bool()],
                reduction='none'))

        return loss_tr, loss_tcl, loss_reg_x, loss_reg_y

    def ohem(self, predict, target, train_mask):
        device = train_mask.device
        pos = (target * train_mask).bool()
        neg = ((1 - target) * train_mask).bool()

        n_pos = pos.float().sum()

        if n_pos.item() > 0:
            loss_pos = F.cross_entropy(
                predict[pos], target[pos], reduction='sum')
            loss_neg = F.cross_entropy(
                predict[neg], target[neg], reduction='none')
            n_neg = min(
                int(neg.float().sum().item()),
                int(self.ohem_ratio * n_pos.float()))
        else:
            loss_pos = torch.tensor(0.).to(device)
            loss_neg = F.cross_entropy(
                predict[neg], target[neg], reduction='none')
            n_neg = 100
        if len(loss_neg) > n_neg:
            loss_neg, _ = torch.topk(loss_neg, n_neg)

        return (loss_pos + loss_neg.sum()) / (n_pos + n_neg).float()

    def fourier2poly(self, real_maps, imag_maps):
        """Transform Fourier coefficient maps to polygon maps.

        Args:
            real_maps (tensor): A map composed of the real parts of the
                Fourier coefficients, whose shape is (-1, 2k+1)
            imag_maps (tensor):A map composed of the imag parts of the
                Fourier coefficients, whose shape is (-1, 2k+1)

        Returns
            x_maps (tensor): A map composed of the x value of the polygon
                represented by n sample points (xn, yn), whose shape is (-1, n)
            y_maps (tensor): A map composed of the y value of the polygon
                represented by n sample points (xn, yn), whose shape is (-1, n)
        """

        device = real_maps.device

        k_vect = torch.arange(
            -self.fourier_degree,
            self.fourier_degree + 1,
            dtype=torch.float,
            device=device).view(-1, 1)
        i_vect = torch.arange(
            0, self.num_sample, dtype=torch.float, device=device).view(1, -1)

        transform_matrix = 2 * np.pi / self.num_sample * torch.mm(
            k_vect, i_vect)

        x1 = torch.einsum('ak, kn-> an', real_maps,
                          torch.cos(transform_matrix))
        x2 = torch.einsum('ak, kn-> an', imag_maps,
                          torch.sin(transform_matrix))
        y1 = torch.einsum('ak, kn-> an', real_maps,
                          torch.sin(transform_matrix))
        y2 = torch.einsum('ak, kn-> an', imag_maps,
                          torch.cos(transform_matrix))

        x_maps = x1 - x2
        y_maps = y1 + y2

        return x_maps, y_maps