File size: 12,782 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
import warnings

import numpy as np
import torch
import torch.nn.functional as F
from mmdet.core import BitmapMasks
from torch import nn

from mmocr.models.builder import LOSSES
from mmocr.utils import check_argument


@LOSSES.register_module()
class PANLoss(nn.Module):
    """The class for implementing PANet loss. This was partially adapted from
    https://github.com/WenmuZhou/PAN.pytorch.

    PANet: `Efficient and Accurate Arbitrary-
    Shaped Text Detection with Pixel Aggregation Network
    <https://arxiv.org/abs/1908.05900>`_.

    Args:
        alpha (float): The kernel loss coef.
        beta (float): The aggregation and discriminative loss coef.
        delta_aggregation (float): The constant for aggregation loss.
        delta_discrimination (float): The constant for discriminative loss.
        ohem_ratio (float): The negative/positive ratio in ohem.
        reduction (str): The way to reduce the loss.
        speedup_bbox_thr (int):  Speed up if speedup_bbox_thr > 0
            and < bbox num.
    """

    def __init__(self,
                 alpha=0.5,
                 beta=0.25,
                 delta_aggregation=0.5,
                 delta_discrimination=3,
                 ohem_ratio=3,
                 reduction='mean',
                 speedup_bbox_thr=-1):
        super().__init__()
        assert reduction in ['mean', 'sum'], "reduction must in ['mean','sum']"
        self.alpha = alpha
        self.beta = beta
        self.delta_aggregation = delta_aggregation
        self.delta_discrimination = delta_discrimination
        self.ohem_ratio = ohem_ratio
        self.reduction = reduction
        self.speedup_bbox_thr = speedup_bbox_thr

    def bitmasks2tensor(self, bitmasks, target_sz):
        """Convert Bitmasks to tensor.

        Args:
            bitmasks (list[BitmapMasks]): The BitmapMasks list. Each item is
                for one img.
            target_sz (tuple(int, int)): The target tensor of size
                :math:`(H, W)`.

        Returns:
            list[Tensor]: The list of kernel tensors. Each element stands for
            one kernel level.
        """
        assert check_argument.is_type_list(bitmasks, BitmapMasks)
        assert isinstance(target_sz, tuple)

        batch_size = len(bitmasks)
        num_masks = len(bitmasks[0])

        results = []

        for level_inx in range(num_masks):
            kernel = []
            for batch_inx in range(batch_size):
                mask = torch.from_numpy(bitmasks[batch_inx].masks[level_inx])
                # hxw
                mask_sz = mask.shape
                # left, right, top, bottom
                pad = [
                    0, target_sz[1] - mask_sz[1], 0, target_sz[0] - mask_sz[0]
                ]
                mask = F.pad(mask, pad, mode='constant', value=0)
                kernel.append(mask)
            kernel = torch.stack(kernel)
            results.append(kernel)

        return results

    def forward(self, preds, downsample_ratio, gt_kernels, gt_mask):
        """Compute PANet loss.

        Args:
            preds (Tensor): The output tensor of size :math:`(N, 6, H, W)`.
            downsample_ratio (float): The downsample ratio between preds
                and the input img.
            gt_kernels (list[BitmapMasks]): The kernel list with each element
                being the text kernel mask for one img.
            gt_mask (list[BitmapMasks]): The effective mask list
                with each element being the effective mask for one img.

        Returns:
            dict:  A loss dict with ``loss_text``, ``loss_kernel``,
            ``loss_aggregation`` and ``loss_discrimination``.
        """

        assert check_argument.is_type_list(gt_kernels, BitmapMasks)
        assert check_argument.is_type_list(gt_mask, BitmapMasks)
        assert isinstance(downsample_ratio, float)

        pred_texts = preds[:, 0, :, :]
        pred_kernels = preds[:, 1, :, :]
        inst_embed = preds[:, 2:, :, :]
        feature_sz = preds.size()

        mapping = {'gt_kernels': gt_kernels, 'gt_mask': gt_mask}
        gt = {}
        for key, value in mapping.items():
            gt[key] = value
            gt[key] = [item.rescale(downsample_ratio) for item in gt[key]]
            gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:])
            gt[key] = [item.to(preds.device) for item in gt[key]]
        loss_aggrs, loss_discrs = self.aggregation_discrimination_loss(
            gt['gt_kernels'][0], gt['gt_kernels'][1], inst_embed)
        # compute text loss
        sampled_mask = self.ohem_batch(pred_texts.detach(),
                                       gt['gt_kernels'][0], gt['gt_mask'][0])
        loss_texts = self.dice_loss_with_logits(pred_texts,
                                                gt['gt_kernels'][0],
                                                sampled_mask)

        # compute kernel loss

        sampled_masks_kernel = (gt['gt_kernels'][0] > 0.5).float() * (
            gt['gt_mask'][0].float())
        loss_kernels = self.dice_loss_with_logits(pred_kernels,
                                                  gt['gt_kernels'][1],
                                                  sampled_masks_kernel)
        losses = [loss_texts, loss_kernels, loss_aggrs, loss_discrs]
        if self.reduction == 'mean':
            losses = [item.mean() for item in losses]
        elif self.reduction == 'sum':
            losses = [item.sum() for item in losses]
        else:
            raise NotImplementedError

        coefs = [1, self.alpha, self.beta, self.beta]
        losses = [item * scale for item, scale in zip(losses, coefs)]

        results = dict()
        results.update(
            loss_text=losses[0],
            loss_kernel=losses[1],
            loss_aggregation=losses[2],
            loss_discrimination=losses[3])
        return results

    def aggregation_discrimination_loss(self, gt_texts, gt_kernels,
                                        inst_embeds):
        """Compute the aggregation and discrimnative losses.

        Args:
            gt_texts (Tensor): The ground truth text mask of size
                :math:`(N, 1, H, W)`.
            gt_kernels (Tensor): The ground truth text kernel mask of
                size :math:`(N, 1, H, W)`.
            inst_embeds(Tensor): The text instance embedding tensor
                of size :math:`(N, 1, H, W)`.

        Returns:
            (Tensor, Tensor): A tuple of aggregation loss and discriminative
            loss before reduction.
        """

        batch_size = gt_texts.size()[0]
        gt_texts = gt_texts.contiguous().reshape(batch_size, -1)
        gt_kernels = gt_kernels.contiguous().reshape(batch_size, -1)

        assert inst_embeds.shape[1] == 4
        inst_embeds = inst_embeds.contiguous().reshape(batch_size, 4, -1)

        loss_aggrs = []
        loss_discrs = []

        for text, kernel, embed in zip(gt_texts, gt_kernels, inst_embeds):

            # for each image
            text_num = int(text.max().item())
            loss_aggr_img = []
            kernel_avgs = []
            select_num = self.speedup_bbox_thr
            if 0 < select_num < text_num:
                inds = np.random.choice(
                    text_num, select_num, replace=False) + 1
            else:
                inds = range(1, text_num + 1)

            for i in inds:
                # for each text instance
                kernel_i = (kernel == i)  # 0.2ms
                if kernel_i.sum() == 0 or (text == i).sum() == 0:  # 0.2ms
                    continue

                # compute G_Ki in Eq (2)
                avg = embed[:, kernel_i].mean(1)  # 0.5ms
                kernel_avgs.append(avg)

                embed_i = embed[:, text == i]  # 0.6ms
                # ||F(p) - G(K_i)|| - delta_aggregation, shape: nums
                distance = (embed_i - avg.reshape(4, 1)).norm(  # 0.5ms
                    2, dim=0) - self.delta_aggregation
                # compute D(p,K_i) in Eq (2)
                hinge = torch.max(
                    distance,
                    torch.tensor(0, device=distance.device,
                                 dtype=torch.float)).pow(2)

                aggr = torch.log(hinge + 1).mean()
                loss_aggr_img.append(aggr)

            num_inst = len(loss_aggr_img)
            if num_inst > 0:
                loss_aggr_img = torch.stack(loss_aggr_img).mean()
            else:
                loss_aggr_img = torch.tensor(
                    0, device=gt_texts.device, dtype=torch.float)
            loss_aggrs.append(loss_aggr_img)

            loss_discr_img = 0
            for avg_i, avg_j in itertools.combinations(kernel_avgs, 2):
                # delta_discrimination - ||G(K_i) - G(K_j)||
                distance_ij = self.delta_discrimination - (avg_i -
                                                           avg_j).norm(2)
                # D(K_i,K_j)
                D_ij = torch.max(
                    distance_ij,
                    torch.tensor(
                        0, device=distance_ij.device,
                        dtype=torch.float)).pow(2)
                loss_discr_img += torch.log(D_ij + 1)

            if num_inst > 1:
                loss_discr_img /= (num_inst * (num_inst - 1))
            else:
                loss_discr_img = torch.tensor(
                    0, device=gt_texts.device, dtype=torch.float)
            if num_inst == 0:
                warnings.warn('num of instance is 0')
            loss_discrs.append(loss_discr_img)
        return torch.stack(loss_aggrs), torch.stack(loss_discrs)

    def dice_loss_with_logits(self, pred, target, mask):

        smooth = 0.001

        pred = torch.sigmoid(pred)
        target[target <= 0.5] = 0
        target[target > 0.5] = 1
        pred = pred.contiguous().view(pred.size()[0], -1)
        target = target.contiguous().view(target.size()[0], -1)
        mask = mask.contiguous().view(mask.size()[0], -1)

        pred = pred * mask
        target = target * mask

        a = torch.sum(pred * target, 1) + smooth
        b = torch.sum(pred * pred, 1) + smooth
        c = torch.sum(target * target, 1) + smooth
        d = (2 * a) / (b + c)
        return 1 - d

    def ohem_img(self, text_score, gt_text, gt_mask):
        """Sample the top-k maximal negative samples and all positive samples.

        Args:
            text_score (Tensor): The text score of size :math:`(H, W)`.
            gt_text (Tensor): The ground truth text mask of size
                :math:`(H, W)`.
            gt_mask (Tensor): The effective region mask of size :math:`(H, W)`.

        Returns:
            Tensor: The sampled pixel mask of size :math:`(H, W)`.
        """
        assert isinstance(text_score, torch.Tensor)
        assert isinstance(gt_text, torch.Tensor)
        assert isinstance(gt_mask, torch.Tensor)
        assert len(text_score.shape) == 2
        assert text_score.shape == gt_text.shape
        assert gt_text.shape == gt_mask.shape

        pos_num = (int)(torch.sum(gt_text > 0.5).item()) - (int)(
            torch.sum((gt_text > 0.5) * (gt_mask <= 0.5)).item())
        neg_num = (int)(torch.sum(gt_text <= 0.5).item())
        neg_num = (int)(min(pos_num * self.ohem_ratio, neg_num))

        if pos_num == 0 or neg_num == 0:
            warnings.warn('pos_num = 0 or neg_num = 0')
            return gt_mask.bool()

        neg_score = text_score[gt_text <= 0.5]
        neg_score_sorted, _ = torch.sort(neg_score, descending=True)
        threshold = neg_score_sorted[neg_num - 1]
        sampled_mask = (((text_score >= threshold) + (gt_text > 0.5)) > 0) * (
            gt_mask > 0.5)
        return sampled_mask

    def ohem_batch(self, text_scores, gt_texts, gt_mask):
        """OHEM sampling for a batch of imgs.

        Args:
            text_scores (Tensor): The text scores of size :math:`(H, W)`.
            gt_texts (Tensor): The gt text masks of size :math:`(H, W)`.
            gt_mask (Tensor): The gt effective mask of size :math:`(H, W)`.

        Returns:
            Tensor: The sampled mask of size :math:`(H, W)`.
        """
        assert isinstance(text_scores, torch.Tensor)
        assert isinstance(gt_texts, torch.Tensor)
        assert isinstance(gt_mask, torch.Tensor)
        assert len(text_scores.shape) == 3
        assert text_scores.shape == gt_texts.shape
        assert gt_texts.shape == gt_mask.shape

        sampled_masks = []
        for i in range(text_scores.shape[0]):
            sampled_masks.append(
                self.ohem_img(text_scores[i], gt_texts[i], gt_mask[i]))

        sampled_masks = torch.stack(sampled_masks)

        return sampled_masks