Spaces:
Runtime error
Runtime error
File size: 5,409 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule
from mmocr.models.common import MultiHeadAttention
class SatrnEncoderLayer(BaseModule):
""""""
def __init__(self,
d_model=512,
d_inner=512,
n_head=8,
d_k=64,
d_v=64,
dropout=0.1,
qkv_bias=False,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.norm1 = nn.LayerNorm(d_model)
self.attn = MultiHeadAttention(
n_head, d_model, d_k, d_v, qkv_bias=qkv_bias, dropout=dropout)
self.norm2 = nn.LayerNorm(d_model)
self.feed_forward = LocalityAwareFeedforward(
d_model, d_inner, dropout=dropout)
def forward(self, x, h, w, mask=None):
n, hw, c = x.size()
residual = x
x = self.norm1(x)
x = residual + self.attn(x, x, x, mask)
residual = x
x = self.norm2(x)
x = x.transpose(1, 2).contiguous().view(n, c, h, w)
x = self.feed_forward(x)
x = x.view(n, c, hw).transpose(1, 2)
x = residual + x
return x
class LocalityAwareFeedforward(BaseModule):
"""Locality-aware feedforward layer in SATRN, see `SATRN.
<https://arxiv.org/abs/1910.04396>`_
"""
def __init__(self,
d_in,
d_hid,
dropout=0.1,
init_cfg=[
dict(type='Xavier', layer='Conv2d'),
dict(type='Constant', layer='BatchNorm2d', val=1, bias=0)
]):
super().__init__(init_cfg=init_cfg)
self.conv1 = ConvModule(
d_in,
d_hid,
kernel_size=1,
padding=0,
bias=False,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'))
self.depthwise_conv = ConvModule(
d_hid,
d_hid,
kernel_size=3,
padding=1,
bias=False,
groups=d_hid,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'))
self.conv2 = ConvModule(
d_hid,
d_in,
kernel_size=1,
padding=0,
bias=False,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'))
def forward(self, x):
x = self.conv1(x)
x = self.depthwise_conv(x)
x = self.conv2(x)
return x
class Adaptive2DPositionalEncoding(BaseModule):
"""Implement Adaptive 2D positional encoder for SATRN, see
`SATRN <https://arxiv.org/abs/1910.04396>`_
Modified from https://github.com/Media-Smart/vedastr
Licensed under the Apache License, Version 2.0 (the "License");
Args:
d_hid (int): Dimensions of hidden layer.
n_height (int): Max height of the 2D feature output.
n_width (int): Max width of the 2D feature output.
dropout (int): Size of hidden layers of the model.
"""
def __init__(self,
d_hid=512,
n_height=100,
n_width=100,
dropout=0.1,
init_cfg=[dict(type='Xavier', layer='Conv2d')]):
super().__init__(init_cfg=init_cfg)
h_position_encoder = self._get_sinusoid_encoding_table(n_height, d_hid)
h_position_encoder = h_position_encoder.transpose(0, 1)
h_position_encoder = h_position_encoder.view(1, d_hid, n_height, 1)
w_position_encoder = self._get_sinusoid_encoding_table(n_width, d_hid)
w_position_encoder = w_position_encoder.transpose(0, 1)
w_position_encoder = w_position_encoder.view(1, d_hid, 1, n_width)
self.register_buffer('h_position_encoder', h_position_encoder)
self.register_buffer('w_position_encoder', w_position_encoder)
self.h_scale = self.scale_factor_generate(d_hid)
self.w_scale = self.scale_factor_generate(d_hid)
self.pool = nn.AdaptiveAvgPool2d(1)
self.dropout = nn.Dropout(p=dropout)
def _get_sinusoid_encoding_table(self, n_position, d_hid):
"""Sinusoid position encoding table."""
denominator = torch.Tensor([
1.0 / np.power(10000, 2 * (hid_j // 2) / d_hid)
for hid_j in range(d_hid)
])
denominator = denominator.view(1, -1)
pos_tensor = torch.arange(n_position).unsqueeze(-1).float()
sinusoid_table = pos_tensor * denominator
sinusoid_table[:, 0::2] = torch.sin(sinusoid_table[:, 0::2])
sinusoid_table[:, 1::2] = torch.cos(sinusoid_table[:, 1::2])
return sinusoid_table
def scale_factor_generate(self, d_hid):
scale_factor = nn.Sequential(
nn.Conv2d(d_hid, d_hid, kernel_size=1), nn.ReLU(inplace=True),
nn.Conv2d(d_hid, d_hid, kernel_size=1), nn.Sigmoid())
return scale_factor
def forward(self, x):
b, c, h, w = x.size()
avg_pool = self.pool(x)
h_pos_encoding = \
self.h_scale(avg_pool) * self.h_position_encoder[:, :, :h, :]
w_pos_encoding = \
self.w_scale(avg_pool) * self.w_position_encoder[:, :, :, :w]
out = x + h_pos_encoding + w_pos_encoding
out = self.dropout(out)
return out
|