Spaces:
Runtime error
Runtime error
File size: 7,594 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
from functools import partial
import mmcv
import numpy as np
import pytest
import torch
from packaging import version
from mmocr.core.deployment import (ONNXRuntimeDetector, ONNXRuntimeRecognizer,
TensorRTDetector, TensorRTRecognizer)
from mmocr.models import build_detector
@pytest.mark.skipif(torch.__version__ == 'parrots', reason='skip parrots.')
@pytest.mark.skipif(
version.parse(torch.__version__) < version.parse('1.4.0'),
reason='skip if torch=1.3.x')
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='skip if on cpu device')
def test_detector_wrapper():
try:
import onnxruntime as ort # noqa: F401
import tensorrt as trt
from mmcv.tensorrt import onnx2trt, save_trt_engine
except ImportError:
pytest.skip('ONNXRuntime or TensorRT is not available.')
cfg = dict(
model=dict(
type='DBNet',
backbone=dict(
type='ResNet',
depth=18,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
norm_cfg=dict(type='BN', requires_grad=True),
init_cfg=dict(
type='Pretrained', checkpoint='torchvision://resnet18'),
norm_eval=False,
style='caffe'),
neck=dict(
type='FPNC',
in_channels=[64, 128, 256, 512],
lateral_channels=256),
bbox_head=dict(
type='DBHead',
text_repr_type='quad',
in_channels=256,
loss=dict(type='DBLoss', alpha=5.0, beta=10.0,
bbce_loss=True)),
train_cfg=None,
test_cfg=None))
cfg = mmcv.Config(cfg)
pytorch_model = build_detector(cfg.model, None, None)
# prepare data
inputs = torch.rand(1, 3, 224, 224)
img_metas = [{
'img_shape': [1, 3, 224, 224],
'ori_shape': [1, 3, 224, 224],
'pad_shape': [1, 3, 224, 224],
'filename': None,
'scale_factor': np.array([1, 1, 1, 1])
}]
pytorch_model.forward = pytorch_model.forward_dummy
with tempfile.TemporaryDirectory() as tmpdirname:
onnx_path = f'{tmpdirname}/tmp.onnx'
with torch.no_grad():
torch.onnx.export(
pytorch_model,
inputs,
onnx_path,
input_names=['input'],
output_names=['output'],
export_params=True,
keep_initializers_as_inputs=False,
verbose=False,
opset_version=11)
# TensorRT part
def get_GiB(x: int):
"""return x GiB."""
return x * (1 << 30)
trt_path = onnx_path.replace('.onnx', '.trt')
min_shape = [1, 3, 224, 224]
max_shape = [1, 3, 224, 224]
# create trt engine and wrapper
opt_shape_dict = {'input': [min_shape, min_shape, max_shape]}
max_workspace_size = get_GiB(1)
trt_engine = onnx2trt(
onnx_path,
opt_shape_dict,
log_level=trt.Logger.ERROR,
fp16_mode=False,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_path)
print(f'Successfully created TensorRT engine: {trt_path}')
wrap_onnx = ONNXRuntimeDetector(onnx_path, cfg, 0)
wrap_trt = TensorRTDetector(trt_path, cfg, 0)
assert isinstance(wrap_onnx, ONNXRuntimeDetector)
assert isinstance(wrap_trt, TensorRTDetector)
with torch.no_grad():
onnx_outputs = wrap_onnx.simple_test(inputs, img_metas, rescale=False)
trt_outputs = wrap_onnx.simple_test(inputs, img_metas, rescale=False)
assert isinstance(onnx_outputs[0], dict)
assert isinstance(trt_outputs[0], dict)
assert 'boundary_result' in onnx_outputs[0]
assert 'boundary_result' in trt_outputs[0]
@pytest.mark.skipif(torch.__version__ == 'parrots', reason='skip parrots.')
@pytest.mark.skipif(
version.parse(torch.__version__) < version.parse('1.4.0'),
reason='skip if torch=1.3.x')
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='skip if on cpu device')
def test_recognizer_wrapper():
try:
import onnxruntime as ort # noqa: F401
import tensorrt as trt
from mmcv.tensorrt import onnx2trt, save_trt_engine
except ImportError:
pytest.skip('ONNXRuntime or TensorRT is not available.')
cfg = dict(
label_convertor=dict(
type='CTCConvertor',
dict_type='DICT36',
with_unknown=False,
lower=True),
model=dict(
type='CRNNNet',
preprocessor=None,
backbone=dict(
type='VeryDeepVgg', leaky_relu=False, input_channels=1),
encoder=None,
decoder=dict(type='CRNNDecoder', in_channels=512, rnn_flag=True),
loss=dict(type='CTCLoss'),
label_convertor=dict(
type='CTCConvertor',
dict_type='DICT36',
with_unknown=False,
lower=True),
pretrained=None),
train_cfg=None,
test_cfg=None)
cfg = mmcv.Config(cfg)
pytorch_model = build_detector(cfg.model, None, None)
# prepare data
inputs = torch.rand(1, 1, 32, 32)
img_metas = [{
'img_shape': [1, 1, 32, 32],
'ori_shape': [1, 1, 32, 32],
'pad_shape': [1, 1, 32, 32],
'filename': None,
'scale_factor': np.array([1, 1, 1, 1])
}]
pytorch_model.forward = partial(
pytorch_model.forward,
img_metas=img_metas,
return_loss=False,
rescale=True)
with tempfile.TemporaryDirectory() as tmpdirname:
onnx_path = f'{tmpdirname}/tmp.onnx'
with torch.no_grad():
torch.onnx.export(
pytorch_model,
inputs,
onnx_path,
input_names=['input'],
output_names=['output'],
export_params=True,
keep_initializers_as_inputs=False,
verbose=False,
opset_version=11)
# TensorRT part
def get_GiB(x: int):
"""return x GiB."""
return x * (1 << 30)
trt_path = onnx_path.replace('.onnx', '.trt')
min_shape = [1, 1, 32, 32]
max_shape = [1, 1, 32, 32]
# create trt engine and wrapper
opt_shape_dict = {'input': [min_shape, min_shape, max_shape]}
max_workspace_size = get_GiB(1)
trt_engine = onnx2trt(
onnx_path,
opt_shape_dict,
log_level=trt.Logger.ERROR,
fp16_mode=False,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_path)
print(f'Successfully created TensorRT engine: {trt_path}')
wrap_onnx = ONNXRuntimeRecognizer(onnx_path, cfg, 0)
wrap_trt = TensorRTRecognizer(trt_path, cfg, 0)
assert isinstance(wrap_onnx, ONNXRuntimeRecognizer)
assert isinstance(wrap_trt, TensorRTRecognizer)
with torch.no_grad():
onnx_outputs = wrap_onnx.simple_test(inputs, img_metas, rescale=False)
trt_outputs = wrap_onnx.simple_test(inputs, img_metas, rescale=False)
assert isinstance(onnx_outputs[0], dict)
assert isinstance(trt_outputs[0], dict)
assert 'text' in onnx_outputs[0]
assert 'text' in trt_outputs[0]
|