File size: 11,730 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import glob
import os
import os.path as osp
import re

import mmcv
import numpy as np
import scipy.io as scio
import yaml
from shapely.geometry import Polygon

from mmocr.datasets.pipelines.crop import crop_img
from mmocr.utils.fileio import list_to_file


def collect_files(img_dir, gt_dir, split):
    """Collect all images and their corresponding groundtruth files.

    Args:
        img_dir(str): The image directory
        gt_dir(str): The groundtruth directory
        split(str): The split of dataset. Namely: training or test
    Returns:
        files(list): The list of tuples (img_file, groundtruth_file)
    """
    assert isinstance(img_dir, str)
    assert img_dir
    assert isinstance(gt_dir, str)
    assert gt_dir

    # note that we handle png and jpg only. Pls convert others such as gif to
    # jpg or png offline
    suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG']
    # suffixes = ['.png']

    imgs_list = []
    for suffix in suffixes:
        imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix)))

    imgs_list = sorted(imgs_list)
    ann_list = sorted(
        [osp.join(gt_dir, gt_file) for gt_file in os.listdir(gt_dir)])

    files = [(img_file, gt_file)
             for (img_file, gt_file) in zip(imgs_list, ann_list)]
    assert len(files), f'No images found in {img_dir}'
    print(f'Loaded {len(files)} images from {img_dir}')

    return files


def collect_annotations(files, nproc=1):
    """Collect the annotation information.

    Args:
        files(list): The list of tuples (image_file, groundtruth_file)
        nproc(int): The number of process to collect annotations
    Returns:
        images(list): The list of image information dicts
    """
    assert isinstance(files, list)
    assert isinstance(nproc, int)

    if nproc > 1:
        images = mmcv.track_parallel_progress(
            load_img_info, files, nproc=nproc)
    else:
        images = mmcv.track_progress(load_img_info, files)

    return images


def get_contours_mat(gt_path):
    """Get the contours and words for each ground_truth mat file.

    Args:
        gt_path(str): The relative path of the ground_truth mat file
    Returns:
        contours(list[lists]): A list of lists of contours
        for the text instances
        words(list[list]): A list of lists of words (string)
        for the text instances
    """
    assert isinstance(gt_path, str)

    contours = []
    words = []
    data = scio.loadmat(gt_path)
    data_polygt = data['polygt']

    for i, lines in enumerate(data_polygt):
        X = np.array(lines[1])
        Y = np.array(lines[3])

        point_num = len(X[0])
        word = lines[4]
        if len(word) == 0:
            word = '???'
        else:
            word = word[0]

        if word == '#':
            word = '###'
            continue

        words.append(word)

        arr = np.concatenate([X, Y]).T
        contour = []
        for i in range(point_num):
            contour.append(arr[i][0])
            contour.append(arr[i][1])
        contours.append(np.asarray(contour))

    return contours, words


def load_mat_info(img_info, gt_file):
    """Load the information of one ground truth in .mat format.

    Args:
        img_info(dict): The dict of only the image information
        gt_file(str): The relative path of the ground_truth mat
        file for one image
    Returns:
        img_info(dict): The dict of the img and annotation information
    """
    assert isinstance(img_info, dict)
    assert isinstance(gt_file, str)

    contours, words = get_contours_mat(gt_file)
    anno_info = []
    for contour, word in zip(contours, words):
        if contour.shape[0] == 2:
            continue
        coordinates = np.array(contour).reshape(-1, 2)
        polygon = Polygon(coordinates)

        # convert to COCO style XYWH format
        min_x, min_y, max_x, max_y = polygon.bounds
        bbox = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]
        anno = dict(word=word, bbox=bbox)
        anno_info.append(anno)

    img_info.update(anno_info=anno_info)
    return img_info


def process_line(line, contours, words):
    """Get the contours and words by processing each line in the gt file.

    Args:
        line(str): The line in gt file containing annotation info
        contours(list[lists]): A list of lists of contours
        for the text instances
        words(list[list]): A list of lists of words (string)
        for the text instances
    Returns:
        contours(list[lists]): A list of lists of contours
        for the text instances
        words(list[list]): A list of lists of words (string)
        for the text instances
    """

    line = '{' + line.replace('[[', '[').replace(']]', ']') + '}'
    ann_dict = re.sub('([0-9]) +([0-9])', r'\1,\2', line)
    ann_dict = re.sub('([0-9]) +([ 0-9])', r'\1,\2', ann_dict)
    ann_dict = re.sub('([0-9]) -([0-9])', r'\1,-\2', ann_dict)
    ann_dict = ann_dict.replace("[u',']", "[u'#']")
    ann_dict = yaml.safe_load(ann_dict)

    X = np.array([ann_dict['x']])
    Y = np.array([ann_dict['y']])

    if len(ann_dict['transcriptions']) == 0:
        word = '???'
    else:
        word = ann_dict['transcriptions'][0]
        if len(ann_dict['transcriptions']) > 1:
            for ann_word in ann_dict['transcriptions'][1:]:
                word += ',' + ann_word
        word = str(eval(word))
    words.append(word)

    point_num = len(X[0])

    arr = np.concatenate([X, Y]).T
    contour = []
    for i in range(point_num):
        contour.append(arr[i][0])
        contour.append(arr[i][1])
    contours.append(np.asarray(contour))

    return contours, words


def get_contours_txt(gt_path):
    """Get the contours and words for each ground_truth txt file.

    Args:
        gt_path(str): The relative path of the ground_truth mat file
    Returns:
        contours(list[lists]): A list of lists of contours
        for the text instances
        words(list[list]): A list of lists of words (string)
        for the text instances
    """
    assert isinstance(gt_path, str)

    contours = []
    words = []

    with open(gt_path, 'r') as f:
        tmp_line = ''
        for idx, line in enumerate(f):
            line = line.strip()
            if idx == 0:
                tmp_line = line
                continue
            if not line.startswith('x:'):
                tmp_line += ' ' + line
                continue
            else:
                complete_line = tmp_line
                tmp_line = line
            contours, words = process_line(complete_line, contours, words)

        if tmp_line != '':
            contours, words = process_line(tmp_line, contours, words)

        for word in words:

            if word == '#':
                word = '###'
                continue

    return contours, words


def load_txt_info(gt_file, img_info):
    """Load the information of one ground truth in .txt format.

    Args:
        img_info(dict): The dict of only the image information
        gt_file(str): The relative path of the ground_truth mat
        file for one image
    Returns:
        img_info(dict): The dict of the img and annotation information
    """

    contours, words = get_contours_txt(gt_file)
    anno_info = []
    for contour, word in zip(contours, words):
        if contour.shape[0] == 2:
            continue
        coordinates = np.array(contour).reshape(-1, 2)
        polygon = Polygon(coordinates)

        # convert to COCO style XYWH format
        min_x, min_y, max_x, max_y = polygon.bounds
        bbox = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]
        anno = dict(word=word, bbox=bbox)
        anno_info.append(anno)

    img_info.update(anno_info=anno_info)
    return img_info


def generate_ann(root_path, split, image_infos):
    """Generate cropped annotations and label txt file.

    Args:
        root_path(str): The relative path of the totaltext file
        split(str): The split of dataset. Namely: training or test
        image_infos(list[dict]): A list of dicts of the img and
        annotation information
    """

    dst_image_root = osp.join(root_path, 'dst_imgs', split)
    if split == 'training':
        dst_label_file = osp.join(root_path, 'train_label.txt')
    elif split == 'test':
        dst_label_file = osp.join(root_path, 'test_label.txt')
    os.makedirs(dst_image_root, exist_ok=True)

    lines = []
    for image_info in image_infos:
        index = 1
        src_img_path = osp.join(root_path, 'imgs', image_info['file_name'])
        image = mmcv.imread(src_img_path)
        src_img_root = osp.splitext(image_info['file_name'])[0].split('/')[1]

        for anno in image_info['anno_info']:
            word = anno['word']
            dst_img = crop_img(image, anno['bbox'])

            # Skip invalid annotations
            if min(dst_img.shape) == 0:
                continue

            dst_img_name = f'{src_img_root}_{index}.png'
            index += 1
            dst_img_path = osp.join(dst_image_root, dst_img_name)
            mmcv.imwrite(dst_img, dst_img_path)
            lines.append(f'{osp.basename(dst_image_root)}/{dst_img_name} '
                         f'{word}')
    list_to_file(dst_label_file, lines)


def load_img_info(files):
    """Load the information of one image.

    Args:
        files(tuple): The tuple of (img_file, groundtruth_file)
    Returns:
        img_info(dict): The dict of the img and annotation information
    """
    assert isinstance(files, tuple)

    img_file, gt_file = files
    # read imgs with ignoring orientations
    img = mmcv.imread(img_file, 'unchanged')

    split_name = osp.basename(osp.dirname(img_file))
    img_info = dict(
        # remove img_prefix for filename
        file_name=osp.join(split_name, osp.basename(img_file)),
        height=img.shape[0],
        width=img.shape[1],
        # anno_info=anno_info,
        segm_file=osp.join(split_name, osp.basename(gt_file)))

    if osp.splitext(gt_file)[1] == '.mat':
        img_info = load_mat_info(img_info, gt_file)
    elif osp.splitext(gt_file)[1] == '.txt':
        img_info = load_txt_info(gt_file, img_info)
    else:
        raise NotImplementedError

    return img_info


def parse_args():
    parser = argparse.ArgumentParser(
        description='Convert totaltext annotations to COCO format')
    parser.add_argument('root_path', help='totaltext root path')
    parser.add_argument('-o', '--out-dir', help='output path')
    parser.add_argument(
        '--split-list',
        nargs='+',
        help='a list of splits. e.g., "--split_list training test"')

    parser.add_argument(
        '--nproc', default=1, type=int, help='number of process')
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    root_path = args.root_path
    out_dir = args.out_dir if args.out_dir else root_path
    mmcv.mkdir_or_exist(out_dir)

    img_dir = osp.join(root_path, 'imgs')
    gt_dir = osp.join(root_path, 'annotations')

    set_name = {}
    for split in args.split_list:
        set_name.update({split: 'instances_' + split + '.json'})
        assert osp.exists(osp.join(img_dir, split))

    for split, json_name in set_name.items():
        print(f'Converting {split} into {json_name}')
        with mmcv.Timer(
                print_tmpl='It takes {}s to convert totaltext annotation'):
            files = collect_files(
                osp.join(img_dir, split), osp.join(gt_dir, split), split)
            image_infos = collect_annotations(files, nproc=args.nproc)
            generate_ann(root_path, split, image_infos)


if __name__ == '__main__':
    main()