File size: 4,021 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

# for icdar2015
leval_prop_range_icdar2015 = ((0, 0.4), (0.3, 0.7), (0.6, 1.0))
train_pipeline_icdar2015 = [
    dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
    dict(
        type='LoadTextAnnotations',
        with_bbox=True,
        with_mask=True,
        poly2mask=False),
    dict(
        type='ColorJitter',
        brightness=32.0 / 255,
        saturation=0.5,
        contrast=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='RandomScaling', size=800, scale=(3. / 4, 5. / 2)),
    dict(
        type='RandomCropFlip', crop_ratio=0.5, iter_num=1, min_area_ratio=0.2),
    dict(
        type='RandomCropPolyInstances',
        instance_key='gt_masks',
        crop_ratio=0.8,
        min_side_ratio=0.3),
    dict(
        type='RandomRotatePolyInstances',
        rotate_ratio=0.5,
        max_angle=30,
        pad_with_fixed_color=False),
    dict(type='SquareResizePad', target_size=800, pad_ratio=0.6),
    dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'),
    dict(type='Pad', size_divisor=32),
    dict(
        type='FCENetTargets',
        fourier_degree=5,
        level_proportion_range=leval_prop_range_icdar2015),
    dict(
        type='CustomFormatBundle',
        keys=['p3_maps', 'p4_maps', 'p5_maps'],
        visualize=dict(flag=False, boundary_key=None)),
    dict(type='Collect', keys=['img', 'p3_maps', 'p4_maps', 'p5_maps'])
]

img_scale_icdar2015 = (2260, 2260)
test_pipeline_icdar2015 = [
    dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=img_scale_icdar2015,
        flip=False,
        transforms=[
            dict(type='Resize', img_scale=(1280, 800), keep_ratio=True),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]

# for ctw1500
leval_prop_range_ctw1500 = ((0, 0.25), (0.2, 0.65), (0.55, 1.0))
train_pipeline_ctw1500 = [
    dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
    dict(
        type='LoadTextAnnotations',
        with_bbox=True,
        with_mask=True,
        poly2mask=False),
    dict(
        type='ColorJitter',
        brightness=32.0 / 255,
        saturation=0.5,
        contrast=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='RandomScaling', size=800, scale=(3. / 4, 5. / 2)),
    dict(
        type='RandomCropFlip', crop_ratio=0.5, iter_num=1, min_area_ratio=0.2),
    dict(
        type='RandomCropPolyInstances',
        instance_key='gt_masks',
        crop_ratio=0.8,
        min_side_ratio=0.3),
    dict(
        type='RandomRotatePolyInstances',
        rotate_ratio=0.5,
        max_angle=30,
        pad_with_fixed_color=False),
    dict(type='SquareResizePad', target_size=800, pad_ratio=0.6),
    dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'),
    dict(type='Pad', size_divisor=32),
    dict(
        type='FCENetTargets',
        fourier_degree=5,
        level_proportion_range=leval_prop_range_ctw1500),
    dict(
        type='CustomFormatBundle',
        keys=['p3_maps', 'p4_maps', 'p5_maps'],
        visualize=dict(flag=False, boundary_key=None)),
    dict(type='Collect', keys=['img', 'p3_maps', 'p4_maps', 'p5_maps'])
]

img_scale_ctw1500 = (1080, 736)
test_pipeline_ctw1500 = [
    dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=img_scale_ctw1500,
        flip=False,
        transforms=[
            dict(type='Resize', img_scale=(1280, 800), keep_ratio=True),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]