File size: 14,660 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import numpy as np
from mmdet.datasets.builder import PIPELINES
from numpy.fft import fft
from numpy.linalg import norm

import mmocr.utils.check_argument as check_argument
from .textsnake_targets import TextSnakeTargets


@PIPELINES.register_module()
class FCENetTargets(TextSnakeTargets):
    """Generate the ground truth targets of FCENet: Fourier Contour Embedding
    for Arbitrary-Shaped Text Detection.

    [https://arxiv.org/abs/2104.10442]

    Args:
        fourier_degree (int): The maximum Fourier transform degree k.
        resample_step (float): The step size for resampling the text center
            line (TCL). It's better not to exceed half of the minimum width.
        center_region_shrink_ratio (float): The shrink ratio of text center
            region.
        level_size_divisors (tuple(int)): The downsample ratio on each level.
        level_proportion_range (tuple(tuple(int))): The range of text sizes
            assigned to each level.
    """

    def __init__(self,
                 fourier_degree=5,
                 resample_step=4.0,
                 center_region_shrink_ratio=0.3,
                 level_size_divisors=(8, 16, 32),
                 level_proportion_range=((0, 0.4), (0.3, 0.7), (0.6, 1.0))):

        super().__init__()
        assert isinstance(level_size_divisors, tuple)
        assert isinstance(level_proportion_range, tuple)
        assert len(level_size_divisors) == len(level_proportion_range)
        self.fourier_degree = fourier_degree
        self.resample_step = resample_step
        self.center_region_shrink_ratio = center_region_shrink_ratio
        self.level_size_divisors = level_size_divisors
        self.level_proportion_range = level_proportion_range

    def generate_center_region_mask(self, img_size, text_polys):
        """Generate text center region mask.

        Args:
            img_size (tuple): The image size of (height, width).
            text_polys (list[list[ndarray]]): The list of text polygons.

        Returns:
            center_region_mask (ndarray): The text center region mask.
        """

        assert isinstance(img_size, tuple)
        assert check_argument.is_2dlist(text_polys)

        h, w = img_size

        center_region_mask = np.zeros((h, w), np.uint8)

        center_region_boxes = []
        for poly in text_polys:
            assert len(poly) == 1
            polygon_points = poly[0].reshape(-1, 2)
            _, _, top_line, bot_line = self.reorder_poly_edge(polygon_points)
            resampled_top_line, resampled_bot_line = self.resample_sidelines(
                top_line, bot_line, self.resample_step)
            resampled_bot_line = resampled_bot_line[::-1]
            center_line = (resampled_top_line + resampled_bot_line) / 2

            line_head_shrink_len = norm(resampled_top_line[0] -
                                        resampled_bot_line[0]) / 4.0
            line_tail_shrink_len = norm(resampled_top_line[-1] -
                                        resampled_bot_line[-1]) / 4.0
            head_shrink_num = int(line_head_shrink_len // self.resample_step)
            tail_shrink_num = int(line_tail_shrink_len // self.resample_step)
            if len(center_line) > head_shrink_num + tail_shrink_num + 2:
                center_line = center_line[head_shrink_num:len(center_line) -
                                          tail_shrink_num]
                resampled_top_line = resampled_top_line[
                    head_shrink_num:len(resampled_top_line) - tail_shrink_num]
                resampled_bot_line = resampled_bot_line[
                    head_shrink_num:len(resampled_bot_line) - tail_shrink_num]

            for i in range(0, len(center_line) - 1):
                tl = center_line[i] + (resampled_top_line[i] - center_line[i]
                                       ) * self.center_region_shrink_ratio
                tr = center_line[i + 1] + (
                    resampled_top_line[i + 1] -
                    center_line[i + 1]) * self.center_region_shrink_ratio
                br = center_line[i + 1] + (
                    resampled_bot_line[i + 1] -
                    center_line[i + 1]) * self.center_region_shrink_ratio
                bl = center_line[i] + (resampled_bot_line[i] - center_line[i]
                                       ) * self.center_region_shrink_ratio
                current_center_box = np.vstack([tl, tr, br,
                                                bl]).astype(np.int32)
                center_region_boxes.append(current_center_box)

        cv2.fillPoly(center_region_mask, center_region_boxes, 1)
        return center_region_mask

    def resample_polygon(self, polygon, n=400):
        """Resample one polygon with n points on its boundary.

        Args:
            polygon (list[float]): The input polygon.
            n (int): The number of resampled points.
        Returns:
            resampled_polygon (list[float]): The resampled polygon.
        """
        length = []

        for i in range(len(polygon)):
            p1 = polygon[i]
            if i == len(polygon) - 1:
                p2 = polygon[0]
            else:
                p2 = polygon[i + 1]
            length.append(((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)**0.5)

        total_length = sum(length)
        n_on_each_line = (np.array(length) / (total_length + 1e-8)) * n
        n_on_each_line = n_on_each_line.astype(np.int32)
        new_polygon = []

        for i in range(len(polygon)):
            num = n_on_each_line[i]
            p1 = polygon[i]
            if i == len(polygon) - 1:
                p2 = polygon[0]
            else:
                p2 = polygon[i + 1]

            if num == 0:
                continue

            dxdy = (p2 - p1) / num
            for j in range(num):
                point = p1 + dxdy * j
                new_polygon.append(point)

        return np.array(new_polygon)

    def normalize_polygon(self, polygon):
        """Normalize one polygon so that its start point is at right most.

        Args:
            polygon (list[float]): The origin polygon.
        Returns:
            new_polygon (lost[float]): The polygon with start point at right.
        """
        temp_polygon = polygon - polygon.mean(axis=0)
        x = np.abs(temp_polygon[:, 0])
        y = temp_polygon[:, 1]
        index_x = np.argsort(x)
        index_y = np.argmin(y[index_x[:8]])
        index = index_x[index_y]
        new_polygon = np.concatenate([polygon[index:], polygon[:index]])
        return new_polygon

    def poly2fourier(self, polygon, fourier_degree):
        """Perform Fourier transformation to generate Fourier coefficients ck
        from polygon.

        Args:
            polygon (ndarray): An input polygon.
            fourier_degree (int): The maximum Fourier degree K.
        Returns:
            c (ndarray(complex)): Fourier coefficients.
        """
        points = polygon[:, 0] + polygon[:, 1] * 1j
        c_fft = fft(points) / len(points)
        c = np.hstack((c_fft[-fourier_degree:], c_fft[:fourier_degree + 1]))
        return c

    def clockwise(self, c, fourier_degree):
        """Make sure the polygon reconstructed from Fourier coefficients c in
        the clockwise direction.

        Args:
            polygon (list[float]): The origin polygon.
        Returns:
            new_polygon (lost[float]): The polygon in clockwise point order.
        """
        if np.abs(c[fourier_degree + 1]) > np.abs(c[fourier_degree - 1]):
            return c
        elif np.abs(c[fourier_degree + 1]) < np.abs(c[fourier_degree - 1]):
            return c[::-1]
        else:
            if np.abs(c[fourier_degree + 2]) > np.abs(c[fourier_degree - 2]):
                return c
            else:
                return c[::-1]

    def cal_fourier_signature(self, polygon, fourier_degree):
        """Calculate Fourier signature from input polygon.

        Args:
              polygon (ndarray): The input polygon.
              fourier_degree (int): The maximum Fourier degree K.
        Returns:
              fourier_signature (ndarray): An array shaped (2k+1, 2) containing
                  real part and image part of 2k+1 Fourier coefficients.
        """
        resampled_polygon = self.resample_polygon(polygon)
        resampled_polygon = self.normalize_polygon(resampled_polygon)

        fourier_coeff = self.poly2fourier(resampled_polygon, fourier_degree)
        fourier_coeff = self.clockwise(fourier_coeff, fourier_degree)

        real_part = np.real(fourier_coeff).reshape((-1, 1))
        image_part = np.imag(fourier_coeff).reshape((-1, 1))
        fourier_signature = np.hstack([real_part, image_part])

        return fourier_signature

    def generate_fourier_maps(self, img_size, text_polys):
        """Generate Fourier coefficient maps.

        Args:
            img_size (tuple): The image size of (height, width).
            text_polys (list[list[ndarray]]): The list of text polygons.

        Returns:
            fourier_real_map (ndarray): The Fourier coefficient real part maps.
            fourier_image_map (ndarray): The Fourier coefficient image part
                maps.
        """

        assert isinstance(img_size, tuple)
        assert check_argument.is_2dlist(text_polys)

        h, w = img_size
        k = self.fourier_degree
        real_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32)
        imag_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32)

        for poly in text_polys:
            assert len(poly) == 1
            text_instance = [[poly[0][i], poly[0][i + 1]]
                             for i in range(0, len(poly[0]), 2)]
            mask = np.zeros((h, w), dtype=np.uint8)
            polygon = np.array(text_instance).reshape((1, -1, 2))
            cv2.fillPoly(mask, polygon.astype(np.int32), 1)
            fourier_coeff = self.cal_fourier_signature(polygon[0], k)
            for i in range(-k, k + 1):
                if i != 0:
                    real_map[i + k, :, :] = mask * fourier_coeff[i + k, 0] + (
                        1 - mask) * real_map[i + k, :, :]
                    imag_map[i + k, :, :] = mask * fourier_coeff[i + k, 1] + (
                        1 - mask) * imag_map[i + k, :, :]
                else:
                    yx = np.argwhere(mask > 0.5)
                    k_ind = np.ones((len(yx)), dtype=np.int64) * k
                    y, x = yx[:, 0], yx[:, 1]
                    real_map[k_ind, y, x] = fourier_coeff[k, 0] - x
                    imag_map[k_ind, y, x] = fourier_coeff[k, 1] - y

        return real_map, imag_map

    def generate_level_targets(self, img_size, text_polys, ignore_polys):
        """Generate ground truth target on each level.

        Args:
            img_size (list[int]): Shape of input image.
            text_polys (list[list[ndarray]]): A list of ground truth polygons.
            ignore_polys (list[list[ndarray]]): A list of ignored polygons.
        Returns:
            level_maps (list(ndarray)): A list of ground target on each level.
        """
        h, w = img_size
        lv_size_divs = self.level_size_divisors
        lv_proportion_range = self.level_proportion_range
        lv_text_polys = [[] for i in range(len(lv_size_divs))]
        lv_ignore_polys = [[] for i in range(len(lv_size_divs))]
        level_maps = []
        for poly in text_polys:
            assert len(poly) == 1
            text_instance = [[poly[0][i], poly[0][i + 1]]
                             for i in range(0, len(poly[0]), 2)]
            polygon = np.array(text_instance, dtype=np.int).reshape((1, -1, 2))
            _, _, box_w, box_h = cv2.boundingRect(polygon)
            proportion = max(box_h, box_w) / (h + 1e-8)

            for ind, proportion_range in enumerate(lv_proportion_range):
                if proportion_range[0] < proportion < proportion_range[1]:
                    lv_text_polys[ind].append([poly[0] / lv_size_divs[ind]])

        for ignore_poly in ignore_polys:
            assert len(ignore_poly) == 1
            text_instance = [[ignore_poly[0][i], ignore_poly[0][i + 1]]
                             for i in range(0, len(ignore_poly[0]), 2)]
            polygon = np.array(text_instance, dtype=np.int).reshape((1, -1, 2))
            _, _, box_w, box_h = cv2.boundingRect(polygon)
            proportion = max(box_h, box_w) / (h + 1e-8)

            for ind, proportion_range in enumerate(lv_proportion_range):
                if proportion_range[0] < proportion < proportion_range[1]:
                    lv_ignore_polys[ind].append(
                        [ignore_poly[0] / lv_size_divs[ind]])

        for ind, size_divisor in enumerate(lv_size_divs):
            current_level_maps = []
            level_img_size = (h // size_divisor, w // size_divisor)

            text_region = self.generate_text_region_mask(
                level_img_size, lv_text_polys[ind])[None]
            current_level_maps.append(text_region)

            center_region = self.generate_center_region_mask(
                level_img_size, lv_text_polys[ind])[None]
            current_level_maps.append(center_region)

            effective_mask = self.generate_effective_mask(
                level_img_size, lv_ignore_polys[ind])[None]
            current_level_maps.append(effective_mask)

            fourier_real_map, fourier_image_maps = self.generate_fourier_maps(
                level_img_size, lv_text_polys[ind])
            current_level_maps.append(fourier_real_map)
            current_level_maps.append(fourier_image_maps)

            level_maps.append(np.concatenate(current_level_maps))

        return level_maps

    def generate_targets(self, results):
        """Generate the ground truth targets for FCENet.

        Args:
            results (dict): The input result dictionary.

        Returns:
            results (dict): The output result dictionary.
        """

        assert isinstance(results, dict)

        polygon_masks = results['gt_masks'].masks
        polygon_masks_ignore = results['gt_masks_ignore'].masks

        h, w, _ = results['img_shape']

        level_maps = self.generate_level_targets((h, w), polygon_masks,
                                                 polygon_masks_ignore)

        results['mask_fields'].clear()  # rm gt_masks encoded by polygons
        mapping = {
            'p3_maps': level_maps[0],
            'p4_maps': level_maps[1],
            'p5_maps': level_maps[2]
        }
        for key, value in mapping.items():
            results[key] = value

        return results