Spaces:
Runtime error
Runtime error
File size: 14,660 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import numpy as np
from mmdet.datasets.builder import PIPELINES
from numpy.fft import fft
from numpy.linalg import norm
import mmocr.utils.check_argument as check_argument
from .textsnake_targets import TextSnakeTargets
@PIPELINES.register_module()
class FCENetTargets(TextSnakeTargets):
"""Generate the ground truth targets of FCENet: Fourier Contour Embedding
for Arbitrary-Shaped Text Detection.
[https://arxiv.org/abs/2104.10442]
Args:
fourier_degree (int): The maximum Fourier transform degree k.
resample_step (float): The step size for resampling the text center
line (TCL). It's better not to exceed half of the minimum width.
center_region_shrink_ratio (float): The shrink ratio of text center
region.
level_size_divisors (tuple(int)): The downsample ratio on each level.
level_proportion_range (tuple(tuple(int))): The range of text sizes
assigned to each level.
"""
def __init__(self,
fourier_degree=5,
resample_step=4.0,
center_region_shrink_ratio=0.3,
level_size_divisors=(8, 16, 32),
level_proportion_range=((0, 0.4), (0.3, 0.7), (0.6, 1.0))):
super().__init__()
assert isinstance(level_size_divisors, tuple)
assert isinstance(level_proportion_range, tuple)
assert len(level_size_divisors) == len(level_proportion_range)
self.fourier_degree = fourier_degree
self.resample_step = resample_step
self.center_region_shrink_ratio = center_region_shrink_ratio
self.level_size_divisors = level_size_divisors
self.level_proportion_range = level_proportion_range
def generate_center_region_mask(self, img_size, text_polys):
"""Generate text center region mask.
Args:
img_size (tuple): The image size of (height, width).
text_polys (list[list[ndarray]]): The list of text polygons.
Returns:
center_region_mask (ndarray): The text center region mask.
"""
assert isinstance(img_size, tuple)
assert check_argument.is_2dlist(text_polys)
h, w = img_size
center_region_mask = np.zeros((h, w), np.uint8)
center_region_boxes = []
for poly in text_polys:
assert len(poly) == 1
polygon_points = poly[0].reshape(-1, 2)
_, _, top_line, bot_line = self.reorder_poly_edge(polygon_points)
resampled_top_line, resampled_bot_line = self.resample_sidelines(
top_line, bot_line, self.resample_step)
resampled_bot_line = resampled_bot_line[::-1]
center_line = (resampled_top_line + resampled_bot_line) / 2
line_head_shrink_len = norm(resampled_top_line[0] -
resampled_bot_line[0]) / 4.0
line_tail_shrink_len = norm(resampled_top_line[-1] -
resampled_bot_line[-1]) / 4.0
head_shrink_num = int(line_head_shrink_len // self.resample_step)
tail_shrink_num = int(line_tail_shrink_len // self.resample_step)
if len(center_line) > head_shrink_num + tail_shrink_num + 2:
center_line = center_line[head_shrink_num:len(center_line) -
tail_shrink_num]
resampled_top_line = resampled_top_line[
head_shrink_num:len(resampled_top_line) - tail_shrink_num]
resampled_bot_line = resampled_bot_line[
head_shrink_num:len(resampled_bot_line) - tail_shrink_num]
for i in range(0, len(center_line) - 1):
tl = center_line[i] + (resampled_top_line[i] - center_line[i]
) * self.center_region_shrink_ratio
tr = center_line[i + 1] + (
resampled_top_line[i + 1] -
center_line[i + 1]) * self.center_region_shrink_ratio
br = center_line[i + 1] + (
resampled_bot_line[i + 1] -
center_line[i + 1]) * self.center_region_shrink_ratio
bl = center_line[i] + (resampled_bot_line[i] - center_line[i]
) * self.center_region_shrink_ratio
current_center_box = np.vstack([tl, tr, br,
bl]).astype(np.int32)
center_region_boxes.append(current_center_box)
cv2.fillPoly(center_region_mask, center_region_boxes, 1)
return center_region_mask
def resample_polygon(self, polygon, n=400):
"""Resample one polygon with n points on its boundary.
Args:
polygon (list[float]): The input polygon.
n (int): The number of resampled points.
Returns:
resampled_polygon (list[float]): The resampled polygon.
"""
length = []
for i in range(len(polygon)):
p1 = polygon[i]
if i == len(polygon) - 1:
p2 = polygon[0]
else:
p2 = polygon[i + 1]
length.append(((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)**0.5)
total_length = sum(length)
n_on_each_line = (np.array(length) / (total_length + 1e-8)) * n
n_on_each_line = n_on_each_line.astype(np.int32)
new_polygon = []
for i in range(len(polygon)):
num = n_on_each_line[i]
p1 = polygon[i]
if i == len(polygon) - 1:
p2 = polygon[0]
else:
p2 = polygon[i + 1]
if num == 0:
continue
dxdy = (p2 - p1) / num
for j in range(num):
point = p1 + dxdy * j
new_polygon.append(point)
return np.array(new_polygon)
def normalize_polygon(self, polygon):
"""Normalize one polygon so that its start point is at right most.
Args:
polygon (list[float]): The origin polygon.
Returns:
new_polygon (lost[float]): The polygon with start point at right.
"""
temp_polygon = polygon - polygon.mean(axis=0)
x = np.abs(temp_polygon[:, 0])
y = temp_polygon[:, 1]
index_x = np.argsort(x)
index_y = np.argmin(y[index_x[:8]])
index = index_x[index_y]
new_polygon = np.concatenate([polygon[index:], polygon[:index]])
return new_polygon
def poly2fourier(self, polygon, fourier_degree):
"""Perform Fourier transformation to generate Fourier coefficients ck
from polygon.
Args:
polygon (ndarray): An input polygon.
fourier_degree (int): The maximum Fourier degree K.
Returns:
c (ndarray(complex)): Fourier coefficients.
"""
points = polygon[:, 0] + polygon[:, 1] * 1j
c_fft = fft(points) / len(points)
c = np.hstack((c_fft[-fourier_degree:], c_fft[:fourier_degree + 1]))
return c
def clockwise(self, c, fourier_degree):
"""Make sure the polygon reconstructed from Fourier coefficients c in
the clockwise direction.
Args:
polygon (list[float]): The origin polygon.
Returns:
new_polygon (lost[float]): The polygon in clockwise point order.
"""
if np.abs(c[fourier_degree + 1]) > np.abs(c[fourier_degree - 1]):
return c
elif np.abs(c[fourier_degree + 1]) < np.abs(c[fourier_degree - 1]):
return c[::-1]
else:
if np.abs(c[fourier_degree + 2]) > np.abs(c[fourier_degree - 2]):
return c
else:
return c[::-1]
def cal_fourier_signature(self, polygon, fourier_degree):
"""Calculate Fourier signature from input polygon.
Args:
polygon (ndarray): The input polygon.
fourier_degree (int): The maximum Fourier degree K.
Returns:
fourier_signature (ndarray): An array shaped (2k+1, 2) containing
real part and image part of 2k+1 Fourier coefficients.
"""
resampled_polygon = self.resample_polygon(polygon)
resampled_polygon = self.normalize_polygon(resampled_polygon)
fourier_coeff = self.poly2fourier(resampled_polygon, fourier_degree)
fourier_coeff = self.clockwise(fourier_coeff, fourier_degree)
real_part = np.real(fourier_coeff).reshape((-1, 1))
image_part = np.imag(fourier_coeff).reshape((-1, 1))
fourier_signature = np.hstack([real_part, image_part])
return fourier_signature
def generate_fourier_maps(self, img_size, text_polys):
"""Generate Fourier coefficient maps.
Args:
img_size (tuple): The image size of (height, width).
text_polys (list[list[ndarray]]): The list of text polygons.
Returns:
fourier_real_map (ndarray): The Fourier coefficient real part maps.
fourier_image_map (ndarray): The Fourier coefficient image part
maps.
"""
assert isinstance(img_size, tuple)
assert check_argument.is_2dlist(text_polys)
h, w = img_size
k = self.fourier_degree
real_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32)
imag_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32)
for poly in text_polys:
assert len(poly) == 1
text_instance = [[poly[0][i], poly[0][i + 1]]
for i in range(0, len(poly[0]), 2)]
mask = np.zeros((h, w), dtype=np.uint8)
polygon = np.array(text_instance).reshape((1, -1, 2))
cv2.fillPoly(mask, polygon.astype(np.int32), 1)
fourier_coeff = self.cal_fourier_signature(polygon[0], k)
for i in range(-k, k + 1):
if i != 0:
real_map[i + k, :, :] = mask * fourier_coeff[i + k, 0] + (
1 - mask) * real_map[i + k, :, :]
imag_map[i + k, :, :] = mask * fourier_coeff[i + k, 1] + (
1 - mask) * imag_map[i + k, :, :]
else:
yx = np.argwhere(mask > 0.5)
k_ind = np.ones((len(yx)), dtype=np.int64) * k
y, x = yx[:, 0], yx[:, 1]
real_map[k_ind, y, x] = fourier_coeff[k, 0] - x
imag_map[k_ind, y, x] = fourier_coeff[k, 1] - y
return real_map, imag_map
def generate_level_targets(self, img_size, text_polys, ignore_polys):
"""Generate ground truth target on each level.
Args:
img_size (list[int]): Shape of input image.
text_polys (list[list[ndarray]]): A list of ground truth polygons.
ignore_polys (list[list[ndarray]]): A list of ignored polygons.
Returns:
level_maps (list(ndarray)): A list of ground target on each level.
"""
h, w = img_size
lv_size_divs = self.level_size_divisors
lv_proportion_range = self.level_proportion_range
lv_text_polys = [[] for i in range(len(lv_size_divs))]
lv_ignore_polys = [[] for i in range(len(lv_size_divs))]
level_maps = []
for poly in text_polys:
assert len(poly) == 1
text_instance = [[poly[0][i], poly[0][i + 1]]
for i in range(0, len(poly[0]), 2)]
polygon = np.array(text_instance, dtype=np.int).reshape((1, -1, 2))
_, _, box_w, box_h = cv2.boundingRect(polygon)
proportion = max(box_h, box_w) / (h + 1e-8)
for ind, proportion_range in enumerate(lv_proportion_range):
if proportion_range[0] < proportion < proportion_range[1]:
lv_text_polys[ind].append([poly[0] / lv_size_divs[ind]])
for ignore_poly in ignore_polys:
assert len(ignore_poly) == 1
text_instance = [[ignore_poly[0][i], ignore_poly[0][i + 1]]
for i in range(0, len(ignore_poly[0]), 2)]
polygon = np.array(text_instance, dtype=np.int).reshape((1, -1, 2))
_, _, box_w, box_h = cv2.boundingRect(polygon)
proportion = max(box_h, box_w) / (h + 1e-8)
for ind, proportion_range in enumerate(lv_proportion_range):
if proportion_range[0] < proportion < proportion_range[1]:
lv_ignore_polys[ind].append(
[ignore_poly[0] / lv_size_divs[ind]])
for ind, size_divisor in enumerate(lv_size_divs):
current_level_maps = []
level_img_size = (h // size_divisor, w // size_divisor)
text_region = self.generate_text_region_mask(
level_img_size, lv_text_polys[ind])[None]
current_level_maps.append(text_region)
center_region = self.generate_center_region_mask(
level_img_size, lv_text_polys[ind])[None]
current_level_maps.append(center_region)
effective_mask = self.generate_effective_mask(
level_img_size, lv_ignore_polys[ind])[None]
current_level_maps.append(effective_mask)
fourier_real_map, fourier_image_maps = self.generate_fourier_maps(
level_img_size, lv_text_polys[ind])
current_level_maps.append(fourier_real_map)
current_level_maps.append(fourier_image_maps)
level_maps.append(np.concatenate(current_level_maps))
return level_maps
def generate_targets(self, results):
"""Generate the ground truth targets for FCENet.
Args:
results (dict): The input result dictionary.
Returns:
results (dict): The output result dictionary.
"""
assert isinstance(results, dict)
polygon_masks = results['gt_masks'].masks
polygon_masks_ignore = results['gt_masks_ignore'].masks
h, w, _ = results['img_shape']
level_maps = self.generate_level_targets((h, w), polygon_masks,
polygon_masks_ignore)
results['mask_fields'].clear() # rm gt_masks encoded by polygons
mapping = {
'p3_maps': level_maps[0],
'p4_maps': level_maps[1],
'p5_maps': level_maps[2]
}
for key, value in mapping.items():
results[key] = value
return results
|