Spaces:
Runtime error
Runtime error
File size: 9,998 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# Copyright (c) OpenMMLab. All rights reserved.
import imgaug
import imgaug.augmenters as iaa
import mmcv
import numpy as np
from mmdet.core.mask import PolygonMasks
from mmdet.datasets.builder import PIPELINES
class AugmenterBuilder:
"""Build imgaug object according ImgAug argmentations."""
def __init__(self):
pass
def build(self, args, root=True):
if args is None:
return None
if isinstance(args, (int, float, str)):
return args
if isinstance(args, list):
if root:
sequence = [self.build(value, root=False) for value in args]
return iaa.Sequential(sequence)
arg_list = [self.to_tuple_if_list(a) for a in args[1:]]
return getattr(iaa, args[0])(*arg_list)
if isinstance(args, dict):
if 'cls' in args:
cls = getattr(iaa, args['cls'])
return cls(
**{
k: self.to_tuple_if_list(v)
for k, v in args.items() if not k == 'cls'
})
else:
return {
key: self.build(value, root=False)
for key, value in args.items()
}
raise RuntimeError('unknown augmenter arg: ' + str(args))
def to_tuple_if_list(self, obj):
if isinstance(obj, list):
return tuple(obj)
return obj
@PIPELINES.register_module()
class ImgAug:
"""A wrapper to use imgaug https://github.com/aleju/imgaug.
Args:
args ([list[list|dict]]): The argumentation list. For details, please
refer to imgaug document. Take args=[['Fliplr', 0.5],
dict(cls='Affine', rotate=[-10, 10]), ['Resize', [0.5, 3.0]]] as an
example. The args horizontally flip images with probability 0.5,
followed by random rotation with angles in range [-10, 10], and
resize with an independent scale in range [0.5, 3.0] for each
side of images.
"""
def __init__(self, args=None):
self.augmenter_args = args
self.augmenter = AugmenterBuilder().build(self.augmenter_args)
def __call__(self, results):
# img is bgr
image = results['img']
aug = None
shape = image.shape
if self.augmenter:
aug = self.augmenter.to_deterministic()
results['img'] = aug.augment_image(image)
results['img_shape'] = results['img'].shape
results['flip'] = 'unknown' # it's unknown
results['flip_direction'] = 'unknown' # it's unknown
target_shape = results['img_shape']
self.may_augment_annotation(aug, shape, target_shape, results)
return results
def may_augment_annotation(self, aug, shape, target_shape, results):
if aug is None:
return results
# augment polygon mask
for key in results['mask_fields']:
masks = self.may_augment_poly(aug, shape, results[key])
if len(masks) > 0:
results[key] = PolygonMasks(masks, *target_shape[:2])
# augment bbox
for key in results['bbox_fields']:
bboxes = self.may_augment_poly(
aug, shape, results[key], mask_flag=False)
results[key] = np.zeros(0)
if len(bboxes) > 0:
results[key] = np.stack(bboxes)
return results
def may_augment_poly(self, aug, img_shape, polys, mask_flag=True):
key_points, poly_point_nums = [], []
for poly in polys:
if mask_flag:
poly = poly[0]
poly = poly.reshape(-1, 2)
key_points.extend([imgaug.Keypoint(p[0], p[1]) for p in poly])
poly_point_nums.append(poly.shape[0])
key_points = aug.augment_keypoints(
[imgaug.KeypointsOnImage(keypoints=key_points,
shape=img_shape)])[0].keypoints
new_polys = []
start_idx = 0
for poly_point_num in poly_point_nums:
new_poly = []
for key_point in key_points[start_idx:(start_idx +
poly_point_num)]:
new_poly.append([key_point.x, key_point.y])
start_idx += poly_point_num
new_poly = np.array(new_poly).flatten()
new_polys.append([new_poly] if mask_flag else new_poly)
return new_polys
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str
@PIPELINES.register_module()
class EastRandomCrop:
def __init__(self,
target_size=(640, 640),
max_tries=10,
min_crop_side_ratio=0.1):
self.target_size = target_size
self.max_tries = max_tries
self.min_crop_side_ratio = min_crop_side_ratio
def __call__(self, results):
# sampling crop
# crop image, boxes, masks
img = results['img']
crop_x, crop_y, crop_w, crop_h = self.crop_area(
img, results['gt_masks'])
scale_w = self.target_size[0] / crop_w
scale_h = self.target_size[1] / crop_h
scale = min(scale_w, scale_h)
h = int(crop_h * scale)
w = int(crop_w * scale)
padded_img = np.zeros(
(self.target_size[1], self.target_size[0], img.shape[2]),
img.dtype)
padded_img[:h, :w] = mmcv.imresize(
img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], (w, h))
# for bboxes
for key in results['bbox_fields']:
lines = []
for box in results[key]:
box = box.reshape(2, 2)
poly = ((box - (crop_x, crop_y)) * scale)
if not self.is_poly_outside_rect(poly, 0, 0, w, h):
lines.append(poly.flatten())
results[key] = np.array(lines)
# for masks
for key in results['mask_fields']:
polys = []
polys_label = []
for poly in results[key]:
poly = np.array(poly).reshape(-1, 2)
poly = ((poly - (crop_x, crop_y)) * scale)
if not self.is_poly_outside_rect(poly, 0, 0, w, h):
polys.append([poly])
polys_label.append(0)
results[key] = PolygonMasks(polys, *self.target_size)
if key == 'gt_masks':
results['gt_labels'] = polys_label
results['img'] = padded_img
results['img_shape'] = padded_img.shape
return results
def is_poly_in_rect(self, poly, x, y, w, h):
poly = np.array(poly)
if poly[:, 0].min() < x or poly[:, 0].max() > x + w:
return False
if poly[:, 1].min() < y or poly[:, 1].max() > y + h:
return False
return True
def is_poly_outside_rect(self, poly, x, y, w, h):
poly = np.array(poly).reshape(-1, 2)
if poly[:, 0].max() < x or poly[:, 0].min() > x + w:
return True
if poly[:, 1].max() < y or poly[:, 1].min() > y + h:
return True
return False
def split_regions(self, axis):
regions = []
min_axis = 0
for i in range(1, axis.shape[0]):
if axis[i] != axis[i - 1] + 1:
region = axis[min_axis:i]
min_axis = i
regions.append(region)
return regions
def random_select(self, axis, max_size):
xx = np.random.choice(axis, size=2)
xmin = np.min(xx)
xmax = np.max(xx)
xmin = np.clip(xmin, 0, max_size - 1)
xmax = np.clip(xmax, 0, max_size - 1)
return xmin, xmax
def region_wise_random_select(self, regions):
selected_index = list(np.random.choice(len(regions), 2))
selected_values = []
for index in selected_index:
axis = regions[index]
xx = int(np.random.choice(axis, size=1))
selected_values.append(xx)
xmin = min(selected_values)
xmax = max(selected_values)
return xmin, xmax
def crop_area(self, img, polys):
h, w, _ = img.shape
h_array = np.zeros(h, dtype=np.int32)
w_array = np.zeros(w, dtype=np.int32)
for points in polys:
points = np.round(
points, decimals=0).astype(np.int32).reshape(-1, 2)
min_x = np.min(points[:, 0])
max_x = np.max(points[:, 0])
w_array[min_x:max_x] = 1
min_y = np.min(points[:, 1])
max_y = np.max(points[:, 1])
h_array[min_y:max_y] = 1
# ensure the cropped area not across a text
h_axis = np.where(h_array == 0)[0]
w_axis = np.where(w_array == 0)[0]
if len(h_axis) == 0 or len(w_axis) == 0:
return 0, 0, w, h
h_regions = self.split_regions(h_axis)
w_regions = self.split_regions(w_axis)
for i in range(self.max_tries):
if len(w_regions) > 1:
xmin, xmax = self.region_wise_random_select(w_regions)
else:
xmin, xmax = self.random_select(w_axis, w)
if len(h_regions) > 1:
ymin, ymax = self.region_wise_random_select(h_regions)
else:
ymin, ymax = self.random_select(h_axis, h)
if (xmax - xmin < self.min_crop_side_ratio * w
or ymax - ymin < self.min_crop_side_ratio * h):
# area too small
continue
num_poly_in_rect = 0
for poly in polys:
if not self.is_poly_outside_rect(poly, xmin, ymin, xmax - xmin,
ymax - ymin):
num_poly_in_rect += 1
break
if num_poly_in_rect > 0:
return xmin, ymin, xmax - xmin, ymax - ymin
return 0, 0, w, h
|