File size: 2,281 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Copyright (c) OpenMMLab. All rights reserved.
from torch import nn
from torch.nn import CrossEntropyLoss

from mmocr.models.builder import LOSSES


@LOSSES.register_module()
class MaskedCrossEntropyLoss(nn.Module):
    """The implementation of masked cross entropy loss.

    The mask has 1 for real tokens and 0 for padding tokens,
        which only keep active parts of the cross entropy loss.
    Args:
        num_labels (int): Number of classes in labels.
        ignore_index (int): Specifies a target value that is ignored
            and does not contribute to the input gradient.
    """

    def __init__(self, num_labels=None, ignore_index=0):
        super().__init__()
        self.num_labels = num_labels
        self.criterion = CrossEntropyLoss(ignore_index=ignore_index)

    def forward(self, logits, img_metas):
        '''Loss forword.
        Args:
            logits: Model output with shape [N, C].
            img_metas (dict): A dict containing the following keys:
                    - img (list]): This parameter is reserved.
                    - labels (list[int]): The labels for each word
                        of the sequence.
                    - texts (list): The words of the sequence.
                    - input_ids (list): The ids for each word of
                        the sequence.
                    - attention_mask (list): The mask for each word
                        of the sequence. The mask has 1 for real tokens
                        and 0 for padding tokens. Only real tokens are
                        attended to.
                    - token_type_ids (list): The tokens for each word
                        of the sequence.
        '''

        labels = img_metas['labels']
        attention_masks = img_metas['attention_masks']

        # Only keep active parts of the loss
        if attention_masks is not None:
            active_loss = attention_masks.view(-1) == 1
            active_logits = logits.view(-1, self.num_labels)[active_loss]
            active_labels = labels.view(-1)[active_loss]
            loss = self.criterion(active_logits, active_labels)
        else:
            loss = self.criterion(
                logits.view(-1, self.num_labels), labels.view(-1))
        return {'loss_cls': loss}