File size: 7,876 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn.functional as F
from mmdet.core import BitmapMasks
from torch import nn

from mmocr.models.builder import LOSSES
from mmocr.utils import check_argument


@LOSSES.register_module()
class TextSnakeLoss(nn.Module):
    """The class for implementing TextSnake loss. This is partially adapted
    from https://github.com/princewang1994/TextSnake.pytorch.

    TextSnake: `A Flexible Representation for Detecting Text of Arbitrary
    Shapes <https://arxiv.org/abs/1807.01544>`_.

    Args:
        ohem_ratio (float): The negative/positive ratio in ohem.
    """

    def __init__(self, ohem_ratio=3.0):
        super().__init__()
        self.ohem_ratio = ohem_ratio

    def balanced_bce_loss(self, pred, gt, mask):

        assert pred.shape == gt.shape == mask.shape
        positive = gt * mask
        negative = (1 - gt) * mask
        positive_count = int(positive.float().sum())
        gt = gt.float()
        if positive_count > 0:
            loss = F.binary_cross_entropy(pred, gt, reduction='none')
            positive_loss = torch.sum(loss * positive.float())
            negative_loss = loss * negative.float()
            negative_count = min(
                int(negative.float().sum()),
                int(positive_count * self.ohem_ratio))
        else:
            positive_loss = torch.tensor(0.0, device=pred.device)
            loss = F.binary_cross_entropy(pred, gt, reduction='none')
            negative_loss = loss * negative.float()
            negative_count = 100
        negative_loss, _ = torch.topk(negative_loss.view(-1), negative_count)

        balance_loss = (positive_loss + torch.sum(negative_loss)) / (
            float(positive_count + negative_count) + 1e-5)

        return balance_loss

    def bitmasks2tensor(self, bitmasks, target_sz):
        """Convert Bitmasks to tensor.

        Args:
            bitmasks (list[BitmapMasks]): The BitmapMasks list. Each item is
                for one img.
            target_sz (tuple(int, int)): The target tensor of size
                :math:`(H, W)`.

        Returns:
            list[Tensor]: The list of kernel tensors. Each element stands for
            one kernel level.
        """
        assert check_argument.is_type_list(bitmasks, BitmapMasks)
        assert isinstance(target_sz, tuple)

        batch_size = len(bitmasks)
        num_masks = len(bitmasks[0])

        results = []

        for level_inx in range(num_masks):
            kernel = []
            for batch_inx in range(batch_size):
                mask = torch.from_numpy(bitmasks[batch_inx].masks[level_inx])
                # hxw
                mask_sz = mask.shape
                # left, right, top, bottom
                pad = [
                    0, target_sz[1] - mask_sz[1], 0, target_sz[0] - mask_sz[0]
                ]
                mask = F.pad(mask, pad, mode='constant', value=0)
                kernel.append(mask)
            kernel = torch.stack(kernel)
            results.append(kernel)

        return results

    def forward(self, pred_maps, downsample_ratio, gt_text_mask,
                gt_center_region_mask, gt_mask, gt_radius_map, gt_sin_map,
                gt_cos_map):
        """
        Args:
            pred_maps (Tensor): The prediction map of shape
                :math:`(N, 5, H, W)`, where each dimension is the map of
                "text_region", "center_region", "sin_map", "cos_map", and
                "radius_map" respectively.
            downsample_ratio (float): Downsample ratio.
            gt_text_mask (list[BitmapMasks]): Gold text masks.
            gt_center_region_mask (list[BitmapMasks]): Gold center region
                masks.
            gt_mask (list[BitmapMasks]): Gold general masks.
            gt_radius_map (list[BitmapMasks]): Gold radius maps.
            gt_sin_map (list[BitmapMasks]): Gold sin maps.
            gt_cos_map (list[BitmapMasks]): Gold cos maps.

        Returns:
            dict:  A loss dict with ``loss_text``, ``loss_center``,
            ``loss_radius``, ``loss_sin`` and ``loss_cos``.
        """

        assert isinstance(downsample_ratio, float)
        assert check_argument.is_type_list(gt_text_mask, BitmapMasks)
        assert check_argument.is_type_list(gt_center_region_mask, BitmapMasks)
        assert check_argument.is_type_list(gt_mask, BitmapMasks)
        assert check_argument.is_type_list(gt_radius_map, BitmapMasks)
        assert check_argument.is_type_list(gt_sin_map, BitmapMasks)
        assert check_argument.is_type_list(gt_cos_map, BitmapMasks)

        pred_text_region = pred_maps[:, 0, :, :]
        pred_center_region = pred_maps[:, 1, :, :]
        pred_sin_map = pred_maps[:, 2, :, :]
        pred_cos_map = pred_maps[:, 3, :, :]
        pred_radius_map = pred_maps[:, 4, :, :]
        feature_sz = pred_maps.size()
        device = pred_maps.device

        # bitmask 2 tensor
        mapping = {
            'gt_text_mask': gt_text_mask,
            'gt_center_region_mask': gt_center_region_mask,
            'gt_mask': gt_mask,
            'gt_radius_map': gt_radius_map,
            'gt_sin_map': gt_sin_map,
            'gt_cos_map': gt_cos_map
        }
        gt = {}
        for key, value in mapping.items():
            gt[key] = value
            if abs(downsample_ratio - 1.0) < 1e-2:
                gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:])
            else:
                gt[key] = [item.rescale(downsample_ratio) for item in gt[key]]
                gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:])
                if key == 'gt_radius_map':
                    gt[key] = [item * downsample_ratio for item in gt[key]]
            gt[key] = [item.to(device) for item in gt[key]]

        scale = torch.sqrt(1.0 / (pred_sin_map**2 + pred_cos_map**2 + 1e-8))
        pred_sin_map = pred_sin_map * scale
        pred_cos_map = pred_cos_map * scale

        loss_text = self.balanced_bce_loss(
            torch.sigmoid(pred_text_region), gt['gt_text_mask'][0],
            gt['gt_mask'][0])

        text_mask = (gt['gt_text_mask'][0] * gt['gt_mask'][0]).float()
        loss_center_map = F.binary_cross_entropy(
            torch.sigmoid(pred_center_region),
            gt['gt_center_region_mask'][0].float(),
            reduction='none')
        if int(text_mask.sum()) > 0:
            loss_center = torch.sum(
                loss_center_map * text_mask) / torch.sum(text_mask)
        else:
            loss_center = torch.tensor(0.0, device=device)

        center_mask = (gt['gt_center_region_mask'][0] *
                       gt['gt_mask'][0]).float()
        if int(center_mask.sum()) > 0:
            map_sz = pred_radius_map.size()
            ones = torch.ones(map_sz, dtype=torch.float, device=device)
            loss_radius = torch.sum(
                F.smooth_l1_loss(
                    pred_radius_map / (gt['gt_radius_map'][0] + 1e-2),
                    ones,
                    reduction='none') * center_mask) / torch.sum(center_mask)
            loss_sin = torch.sum(
                F.smooth_l1_loss(
                    pred_sin_map, gt['gt_sin_map'][0], reduction='none') *
                center_mask) / torch.sum(center_mask)
            loss_cos = torch.sum(
                F.smooth_l1_loss(
                    pred_cos_map, gt['gt_cos_map'][0], reduction='none') *
                center_mask) / torch.sum(center_mask)
        else:
            loss_radius = torch.tensor(0.0, device=device)
            loss_sin = torch.tensor(0.0, device=device)
            loss_cos = torch.tensor(0.0, device=device)

        results = dict(
            loss_text=loss_text,
            loss_center=loss_center,
            loss_radius=loss_radius,
            loss_sin=loss_sin,
            loss_cos=loss_cos)

        return results