File size: 19,532 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
# ------------------------------------------------------------------------------
# Adapted from https://github.com/lonePatient/BERT-NER-Pytorch
# Original licence: Copyright (c) 2020 Weitang Liu, under the MIT License.
# ------------------------------------------------------------------------------

import math

import torch
import torch.nn as nn

from mmocr.models.builder import build_activation_layer


class BertModel(nn.Module):
    """Implement Bert model for named entity recognition task.

    The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch
    Args:
        num_hidden_layers (int): The number of hidden layers.
        initializer_range (float):
        vocab_size (int): Number of words supported.
        hidden_size (int): Hidden size.
        max_position_embeddings (int): Max positionsembedding size.
        type_vocab_size (int): The size of type_vocab.
        layer_norm_eps (float): eps.
        hidden_dropout_prob (float): The dropout probability of hidden layer.
        output_attentions (bool):  Whether use the attentions in output
        output_hidden_states (bool): Whether use the hidden_states in output.
        num_attention_heads (int): The number of attention heads.
        attention_probs_dropout_prob (float): The dropout probability
            for the attention probabilities normalized from
            the attention scores.
        intermediate_size (int): The size of intermediate layer.
        hidden_act_cfg (str):  hidden layer activation
    """

    def __init__(self,
                 num_hidden_layers=12,
                 initializer_range=0.02,
                 vocab_size=21128,
                 hidden_size=768,
                 max_position_embeddings=128,
                 type_vocab_size=2,
                 layer_norm_eps=1e-12,
                 hidden_dropout_prob=0.1,
                 output_attentions=False,
                 output_hidden_states=False,
                 num_attention_heads=12,
                 attention_probs_dropout_prob=0.1,
                 intermediate_size=3072,
                 hidden_act_cfg=dict(type='GeluNew')):
        super().__init__()
        self.embeddings = BertEmbeddings(
            vocab_size=vocab_size,
            hidden_size=hidden_size,
            max_position_embeddings=max_position_embeddings,
            type_vocab_size=type_vocab_size,
            layer_norm_eps=layer_norm_eps,
            hidden_dropout_prob=hidden_dropout_prob)
        self.encoder = BertEncoder(
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            num_hidden_layers=num_hidden_layers,
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            attention_probs_dropout_prob=attention_probs_dropout_prob,
            layer_norm_eps=layer_norm_eps,
            hidden_dropout_prob=hidden_dropout_prob,
            intermediate_size=intermediate_size,
            hidden_act_cfg=hidden_act_cfg)
        self.pooler = BertPooler(hidden_size=hidden_size)
        self.num_hidden_layers = num_hidden_layers
        self.initializer_range = initializer_range
        self.init_weights()

    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings,
                                                      new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings
        return self.embeddings.word_embeddings

    def forward(self,
                input_ids,
                attention_masks=None,
                token_type_ids=None,
                position_ids=None,
                head_mask=None):
        if attention_masks is None:
            attention_masks = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)
        attention_masks = attention_masks[:, None, None]
        attention_masks = attention_masks.to(
            dtype=next(self.parameters()).dtype)
        attention_masks = (1.0 - attention_masks) * -10000.0
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask[None, None, :, None, None]
            elif head_mask.dim() == 2:
                head_mask = head_mask[None, :, None, None]
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype)
        else:
            head_mask = [None] * self.num_hidden_layers

        embedding_output = self.embeddings(
            input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids)
        sequence_output, *encoder_outputs = self.encoder(
            embedding_output, attention_masks, head_mask=head_mask)
        # sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output)

        # add hidden_states and attentions if they are here
        # sequence_output, pooled_output, (hidden_states), (attentions)
        outputs = (
            sequence_output,
            pooled_output,
        ) + tuple(encoder_outputs)
        return outputs

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which
            # uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.initializer_range)
        elif isinstance(module, torch.nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    def init_weights(self):
        """Initialize and prunes weights if needed."""
        # Initialize weights
        self.apply(self._init_weights)


class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.

    The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch.
    Args:
        vocab_size (int): Number of words supported.
        hidden_size (int): Hidden size.
        max_position_embeddings (int): Max positions embedding size.
        type_vocab_size (int): The size of type_vocab.
        layer_norm_eps (float): eps.
        hidden_dropout_prob (float): The dropout probability of hidden layer.
    """

    def __init__(self,
                 vocab_size=21128,
                 hidden_size=768,
                 max_position_embeddings=128,
                 type_vocab_size=2,
                 layer_norm_eps=1e-12,
                 hidden_dropout_prob=0.1):
        super().__init__()

        self.word_embeddings = nn.Embedding(
            vocab_size, hidden_size, padding_idx=0)
        self.position_embeddings = nn.Embedding(max_position_embeddings,
                                                hidden_size)
        self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size)

        # self.LayerNorm is not snake-cased to stick with
        # TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = torch.nn.LayerNorm(hidden_size, eps=layer_norm_eps)
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None, position_ids=None):
        seq_length = input_ids.size(1)
        if position_ids is None:
            position_ids = torch.arange(
                seq_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_emb = self.word_embeddings(input_ids)
        position_emb = self.position_embeddings(position_ids)
        token_type_emb = self.token_type_embeddings(token_type_ids)
        embeddings = words_emb + position_emb + token_type_emb
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertEncoder(nn.Module):
    """The code is adapted from https://github.com/lonePatient/BERT-NER-
    Pytorch."""

    def __init__(self,
                 output_attentions=False,
                 output_hidden_states=False,
                 num_hidden_layers=12,
                 hidden_size=768,
                 num_attention_heads=12,
                 attention_probs_dropout_prob=0.1,
                 layer_norm_eps=1e-12,
                 hidden_dropout_prob=0.1,
                 intermediate_size=3072,
                 hidden_act_cfg=dict(type='GeluNew')):
        super().__init__()
        self.output_attentions = output_attentions
        self.output_hidden_states = output_hidden_states
        self.layer = nn.ModuleList([
            BertLayer(
                hidden_size=hidden_size,
                num_attention_heads=num_attention_heads,
                output_attentions=output_attentions,
                attention_probs_dropout_prob=attention_probs_dropout_prob,
                layer_norm_eps=layer_norm_eps,
                hidden_dropout_prob=hidden_dropout_prob,
                intermediate_size=intermediate_size,
                hidden_act_cfg=hidden_act_cfg)
            for _ in range(num_hidden_layers)
        ])

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
        all_hidden_states = ()
        all_attentions = ()
        for i, layer_module in enumerate(self.layer):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states, )

            layer_outputs = layer_module(hidden_states, attention_mask,
                                         head_mask[i])
            hidden_states = layer_outputs[0]

            if self.output_attentions:
                all_attentions = all_attentions + (layer_outputs[1], )

        # Add last layer
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states, )

        outputs = (hidden_states, )
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states, )
        if self.output_attentions:
            outputs = outputs + (all_attentions, )
        # last-layer hidden state, (all hidden states), (all attentions)
        return outputs


class BertPooler(nn.Module):

    def __init__(self, hidden_size=768):
        super().__init__()
        self.dense = nn.Linear(hidden_size, hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertLayer(nn.Module):
    """Bert layer.

    The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch.
    """

    def __init__(self,
                 hidden_size=768,
                 num_attention_heads=12,
                 output_attentions=False,
                 attention_probs_dropout_prob=0.1,
                 layer_norm_eps=1e-12,
                 hidden_dropout_prob=0.1,
                 intermediate_size=3072,
                 hidden_act_cfg=dict(type='GeluNew')):
        super().__init__()
        self.attention = BertAttention(
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            output_attentions=output_attentions,
            attention_probs_dropout_prob=attention_probs_dropout_prob,
            layer_norm_eps=layer_norm_eps,
            hidden_dropout_prob=hidden_dropout_prob)
        self.intermediate = BertIntermediate(
            hidden_size=hidden_size,
            intermediate_size=intermediate_size,
            hidden_act_cfg=hidden_act_cfg)
        self.output = BertOutput(
            intermediate_size=intermediate_size,
            hidden_size=hidden_size,
            layer_norm_eps=layer_norm_eps,
            hidden_dropout_prob=hidden_dropout_prob)

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
        attention_outputs = self.attention(hidden_states, attention_mask,
                                           head_mask)
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        outputs = (layer_output, ) + attention_outputs[
            1:]  # add attentions if we output them
        return outputs


class BertSelfAttention(nn.Module):
    """Bert self attention module.

    The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch.
    """

    def __init__(self,
                 hidden_size=768,
                 num_attention_heads=12,
                 output_attentions=False,
                 attention_probs_dropout_prob=0.1):
        super().__init__()
        if hidden_size % num_attention_heads != 0:
            raise ValueError('The hidden size (%d) is not a multiple of'
                             'the number of attention heads (%d)' %
                             (hidden_size, num_attention_heads))
        self.output_attentions = output_attentions

        self.num_attention_heads = num_attention_heads
        self.att_head_size = int(hidden_size / num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.att_head_size

        self.query = nn.Linear(hidden_size, self.all_head_size)
        self.key = nn.Linear(hidden_size, self.all_head_size)
        self.value = nn.Linear(hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads,
                                       self.att_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and
        # "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer,
                                        key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.att_head_size)
        if attention_mask is not None:
            # Apply the attention mask is precomputed for
            # all layers in BertModel forward() function.
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to.
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (
            self.all_head_size, )
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer,
                   attention_probs) if self.output_attentions else (
                       context_layer, )
        return outputs


class BertSelfOutput(nn.Module):
    """Bert self output.

    The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch.
    """

    def __init__(self,
                 hidden_size=768,
                 layer_norm_eps=1e-12,
                 hidden_dropout_prob=0.1):
        super().__init__()
        self.dense = nn.Linear(hidden_size, hidden_size)
        self.LayerNorm = torch.nn.LayerNorm(hidden_size, eps=layer_norm_eps)
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
    """Bert Attention module implementation.

    The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch.
    """

    def __init__(self,
                 hidden_size=768,
                 num_attention_heads=12,
                 output_attentions=False,
                 attention_probs_dropout_prob=0.1,
                 layer_norm_eps=1e-12,
                 hidden_dropout_prob=0.1):
        super().__init__()
        self.self = BertSelfAttention(
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            output_attentions=output_attentions,
            attention_probs_dropout_prob=attention_probs_dropout_prob)
        self.output = BertSelfOutput(
            hidden_size=hidden_size,
            layer_norm_eps=layer_norm_eps,
            hidden_dropout_prob=hidden_dropout_prob)

    def forward(self, input_tensor, attention_mask=None, head_mask=None):
        self_outputs = self.self(input_tensor, attention_mask, head_mask)
        attention_output = self.output(self_outputs[0], input_tensor)
        outputs = (attention_output,
                   ) + self_outputs[1:]  # add attentions if we output them
        return outputs


class BertIntermediate(nn.Module):
    """Bert BertIntermediate module implementation.

    The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch.
    """

    def __init__(self,
                 hidden_size=768,
                 intermediate_size=3072,
                 hidden_act_cfg=dict(type='GeluNew')):
        super().__init__()

        self.dense = nn.Linear(hidden_size, intermediate_size)
        self.intermediate_act_fn = build_activation_layer(hidden_act_cfg)

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    """Bert output module.

    The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch.
    """

    def __init__(self,
                 intermediate_size=3072,
                 hidden_size=768,
                 layer_norm_eps=1e-12,
                 hidden_dropout_prob=0.1):

        super().__init__()
        self.dense = nn.Linear(intermediate_size, hidden_size)
        self.LayerNorm = torch.nn.LayerNorm(hidden_size, eps=layer_norm_eps)
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states